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Abstract— Though implantable cardioverter defibrillators
(ICDs) are increasing in use in both adults and children,
little progress has been devoted to optimizing device and
electrode placement. To facilitate effective ICD placement,
especially in pediatric cases, we have developed a predictive
model that evaluates the efficacy of a delivered shock. We
have also developed an experimental validation approach based
on measurements from clinical cases. The approach involves
obtaining body surface potential maps of ICD discharges during
implantation surgery using a limited lead selection and body
surface estimation algorithm. Comparison of the simulated and
measured potentials yielded very similar patterns and a typical
correlation greater than 0.93, suggesting that the predictive
simulation generates realistic potential values. This validation
approach provides confidence in application of the simulation
pipeline and offers areas to focus future improvements.

I. INTRODUCTION

Implantable cardioverter defibrillators (ICDs), used to
prevent fatal arrhythmias, have become increasingly more
common. The vast majority of these devices have been
designed for use in adults using a standard implantation and
have not been optimized for children or persons with abnor-
mal anatomies or congenital defects [1]. As a result, new
configurations, such as using only one shock lead instead of
two or placing the ICD generator in the abdomen instead of
the left upper chest, are increasingly used to to maximize the
efficiency of the device and to provide increased safety for
the patient [2]. Furthermore, recent studies have shown that
the electric field generated by the ICD can alter the Ca++

dynamics of cardiac tissue, inhibiting the cell contraction,
and interferes with normal hemodymics when the energy of
the shock is larger than necessary [3], [4]. Both the risk of
over-shock and the growing number of unique cases motivate
developments for improving device placement and settings.

In order to optimize the use of ICDs, we have produced a
computational simulation pipeline that enables predictions of
the potential field throughout the torso during defibrillation,
with which the defibrillation threshold (DFT), or lowest level
of energy needed for defibrillation, is calculated for any
given device and patient geometry [5], [6]. In validation
studies, this simulation has shown encouraging accuracy
in predicting the threshold energy required for successful
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defibrillation[5]. However, validations to date have been
limited to DFT comparisons, demonstrating the accuracy of
the final outcome, but not necessarily that the calculated
potential field distributions throughout the torso are accurate.
A more comprehensive validation requires comparison to
clinical recordings of potentials generated by the ICD.

We have developed a method to measure the full surface
potential maps generated during ICD discharge to obtain data
for use in comparison with and validation of the predictive
simulation mentioned. It is possible to measure ICD surface
potentials in humans during implantation surgery when the
device is tested, providing a recording opportunity but pre-
senting significant spatial limitations. By applying a limited
lead selection and body surface estimation algorithm [7], we
can obtain full ICD potential maps while recording from 32
surface electrodes during ICD testing and use these potential
maps to compare with our simulation.

The goal of this study was to validate the patient spe-
cific simulation of defibrillation by recording body surface
potentials during ICD testing. The high level of agreement
between simulated and measured values provided encour-
aging evidence that accurate predictions that account for
patient specific anatomy and that device placement is very
feasible. Furthermore, these results support use of our sim-
ulation approach in answering clinical questions [5], [6]
and motivate ongoing studies to optimize lead and device
placement, especially in pediatric patients and those with
unusual anatomy.

II. METHODS

The validation approach taken in this study included
acquisition of potential maps generated during ICD testing
and a comparison to simulated values. To perform this
validation, we first applied the limited lead selection and
body surface estimation algorithm to determine the ideal lead
set for surface recordings and to calculate a transformation
to estimate the full potential map [7]. Then we used the lead
set and transformation to obtain potential maps during ICD
test. Finally we created a model of each patient to compare
with the clinical data.

A. Reconstructing Surface Potentials

The limited lead selection and body surface estimation
algorithm exploits spacial redundancies in potential maps to
obtain full potential maps with a small subset of points [7].
This algorithm requires a collection of full potential maps to
train the algorithm, i.e., to analyze the statistical variation
between each point to calculate the limited lead set and
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Fig. 1. Application of the limited lead selection and the body surface
estimation algorithm used to measure the ICD surface potential maps.

the transformation between that subset and the full map.
We used a database of simulated surface potentials to train
the algorithm for use with ICD recordings. This database
consisted of simulated surface potentials from geometries
of seven patients, including the four presented in this paper
with ICD geometries with small variation in device location
and variations of tissue conductivity values yielding 2030
potential maps to use in the algorithm. Low level gaussian
noise (5 V, 1 % of the max shock) was added to the potential
maps to account for recording errors introduced by spatial
registration errors and system noise. Using this database of
potentials, we trained the algorithm to measure potential
maps of the ICD discharge as shown in Figure 1.

The limited lead selection and body surface estimation
algorithm was applied to the database of simulated potentials
as described in Figure 1 and Lux et al.[7]. The limited lead
selection was performed on the full database with applied
spatial constraints representing limitations present during
surgery to yield the optimal lead set of 32 surface electrodes
to record potentials. The transformation relating these lead
location (P1) and the remaining potential map (P2) was the
calculated for each patient using a subset of the simulated
database so the relationship between the two subsets are
expressed as:

P̂2 = P̄2 + T · (P1 − P̄1). (1)

where P̂2 is the estimation of P2, T is a transformation
matrix, and P̄1 and P̄2 are the subsets of the vector that
expresses the mean of each location P̄ . Each transfor-
mation was calculated based on potentials generated from
the patient’s geometry (280 potential maps), so that the
variation derived from ICD location and conductivity differ-
ences. Body surface estimation was performed on a separate
database of simulated potentials to test the algorithm. The
estimated potential maps were compared to the simulated
maps for each patient and evaluated using absolute error,
correlation (ρ), relative error (RE), and relative root-mean-

squared (RMS) error (Ē). The average values presented are
given as mean ± standard deviation.

B. Recording Surface Potentials

To obtain measured potentials during ICD testing, we
used surface recording electrodes (32 plus 2 electrodes for
ground and reference), applied to four subjects before the
ICD implantation surgery. The electrodes were placed as
close to the limited lead locations calculated by the algorithm
as possible; the actual locations were documented for recon-
struction. While the ICD was tested, the surface potentials
were recorded using a 32-channel recording system (CVRTI,
University of Utah) at 1 kHz, 2 kHz, or 4 kHz sampling
rate. The potentials generated by the ICD were attenuated
by a factor of 104 to obtain a signals within the range
of the recording system. The potentials for reconstruction
were identified as the potential at the first peak of the ICD
pulse and assigned as the limited lead subset (P1). The body
surface potential map (P̂ = [P1P̂2]) was then estimated using
the calculation transformation (1). The estimated potential
maps were compared to the simulated maps for each patient
and evaluated using the same metrics as with the simulated
potentials. The average values presented are given as mean
± standard deviation.

C. Patient Specific Simulation

The simulation pipeline used for patient specific modeling
of defibrillation in this study is the same as described by
Jolley et al.[5], [6]. Four patients identified as candidates
for ICD implantation were scanned prior to implantation
using a 1.5 T MRI scanner with a double IR pulse sequence.
From these scans, segmentations of each of 10 tissues were
generated using Seg3D software (SCI Institute, University of
Utah) providing patient specific torso geometries. The ICD
geometry modeled in each patient was manually placed using
post-operative x-ray images as reference. Using SCIRun,
the torso model and ICD geometries were then used in
the simulation pipeline to predict the surface potentials for
each recorded shock. The calculated surface potentials were
sampled at the same 370 points used in lead estimation and
compared to the recorded surface potentials.

III. RESULTS

The results presented in this section demonstrate the ability
to reconstruct ICD surface potentials from 32 leads.

A. Reconstruction of Simulated Surface Potentials

The results of the limited lead selection and body surface
estimation algorithm indicated low error and high correlation
when the body surface maps were estimated. The limited
lead selection tended to yield locations as close to the ICD
device and shock coils as possible, resulting in a high con-
centration of leads on the shoulders, along the mid-axillary
lines, and near the xyphoid process. Additionally, the limited
lead selection and body surface estimation demonstrated
exponentially reducing error with an increase in the number
of electrodes in the lead set. The error did not significantly
decrease when using more than 30 electrodes.
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Fig. 2. Typical absolute error between actual and reconstructed potentials
by location from a shock with 500 V magnitude.

The body surface estimation algorithm exhibited high cor-
relation (0.9998±3×10−4), low RMS error (0.04±0.06 %),
and low relative error (0.6±0.3 %). The mean maximum
error of the estimation was 29±20 V on shocks of 500 V.
Figure 2 shows the typical location of high error, near
the left upper chest where the ICD was placed. Though
it was not possible to use the exact limited lead locations
calculated, changes in the lead set used did not significantly
effect the accuracy of the estimation from simulated surface
potentials. The reconstruction of the lead set with the greatest
error based on the location and the number of the leads,
did not change the RMS error more than 0.002 %, the
relative error more than 0.02 %, and the correlation more
than 1×10−5. These changes in the metrics are within the
standard deviation of the metrics from the limited lead set.

B. Reconstructing Measured Surface Potentials

TABLE I
METRICS RELATING THE SIMULATED POTENTIAL MAPS TO THE MAPS

GENERATED FROM THE SURFACE RECORDINGS. ρ IS CORRELATION, RE
IS RELATIVE ERROR, AND Ē IS RELATIVE RMS ERROR.

Subject age shock max ρ RE Ē
8 yo 314 V 0.932 13.8 % 6.97 %

445 V 0.939 12.6 % 6.64 %
545 V 0.993 1.46 % 2.26 %
700 V 0.953 9.38 % 5.74 %

9 yo 437 V 0.953 9.23 % 6.03 %
618 V 0.965 7.17 % 5.32 %

16 yo 450 V 0.951 11 % 7.57 %
650 V 0.958 8.29 % 6.59 %

17 yo 309 V 0.957 18.4 % 8.09 %
438 V 0.955 17.5 % 7.9 %
536 V 0.955 18.3 % 8.07 %

The body surface estimation algorithm was effective in
generating potential maps of ICD discharges that were
qualitatively and quantitatively similar to the maps from
the patient specific simulation. Figure 3 shows examples of
measured ICD shock potentials and those simulated for the

same patient. Qualitatively, the potential maps were similar,
although some cases showed local regions of error near the
left upper chest near the location of the device. The statistical
results in Table I show the quantitative comparison between
the reconstructions and simulations for all four patients. The
correlation for all shocks was above 0.93 with a mean of
0.956±0.015. Similarly, the relative error was also low for
each of the shocks with a mean of 11±5 %. The RMS error
demonstrated similar levels of accuracy of 5±2 %.

IV. DISCUSSION AND CONCLUSIONS

The goal of this study was to validate the simulation
approach that we have used in past studies [5], [6] to
investigate the effects of ICD device and lead placement. The
high accuracy of estimation using both simulated potentials
and recorded potentials provide convincing and consistant
evidence of both the validation approach and the accuracy
of our simulation pipeline.

The limited lead selection and body surface estimation
algorithm adapted in this study demonstrated its capacity for
use in the context of ICD potential distributions. The lead
selection generally chose locations as close as possible to
the extrema of the potential distribution over the chest, a
finding Lux et al. also observed for potentials generated by
the heart in the original formulation [7]. The optimal number
of leads determined from the limited lead selection (30) was
also similar to the 32 selected by Lux et al.[7]. The esti-
mation of the surface potential maps showed high accuracy
when estimating the simulated potential fields (Figure 2),
demonstrating similar fidelity to that of Lux et al.[7].

The high level of agreement between measured and simu-
lated torso potentials of each patient was encouraging and
indicated reasonable accuracy of the simulations. Despite
very high statistical agreement, there were persistent local
differences that provide insight into possible sources of error
that need to be addressed. One potential source of error in
the simulation was the assumption of the heart as a homoge-
neous, isotropic passive conductor. This simplification alters
the electric field near the heart [8] and in some cases may
significantly alter the far–field potential distribution within
the torso [9]. Ongoing studies seek to include estimated fiber
orientation[10] in models of the human torso in order to
evaluate the possible contribution to simulated potentials.

Validation of the modeling and simulation approach in
this study also provides support for our previously reported
findings [5], [6]. Those results suggested that defibrillation
efficiency is strongly dependent on device and lead place-
ment and that it was possible to optimize device implantation
in a way that could take into account variations in torso
anatomy, including congenital abnormalities in children (or
adults), or the use of subcutaneous defibrillation electrodes.
Continuing studies by our group seek to advance both the
application and the design of implantable defibrillators based
on these simulations. Our validation approach offers further
confidence in past and future application of our simulation
pipeline.
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Fig. 3. Surface potential comparison between the reconstruction obtained from surface recordings and the simulation.
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