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Abstract— Ventricular fibrillation (VF) is a lethal cardiac
arrhythmia that if untreated within minutes of its occurrence
will lead to sudden cardiac death. Defibrillation using
electric shocks is the only choice of treatment to restore
the heart to normal rhythm especially in out-of-the-hospital
VF incidents. Refibrillation (i.e., recurrence of VF) is a
common and significant problem in cardiac resuscitation as
it negatively impacts the survival rates. In such refibrillation
cases administration of anti-arrhythmic drugs could improve
the shock outcomes or prevent refibrillation. In cases of
prolonged VF, cardio pulmonary resuscitation (CPR) prior
to the shocks have been shown to improve the survival rates.
The proposed work using wavelet analysis of the pre-shock
VF electrograms attempts to predict the shock outcomes as
successful, refibrillation, and unsuccessful categories. This
feedback in real-time would be of immense assistance to the
Emergency Medical Services (EMS) personnel in choosing the
right combination of therapies (i.e., shock, CPR, pharmacology
interventions) in improving the shock outcomes. Using a
real-word database of 34 pre-shock VF electrograms obtained
from Toronto area EMS personnel, the proposed method
achieved classification accuracies of 76.5% and 75% for a two
level binary classification of the three groups.

Index Terms— Refibrillation, Ventricular Fibrillation,
Wavelet Analysis, Feature Extraction, Pattern Classification.

I. INTRODUCTION

About 350,000 sudden cardiac deaths are reported every

year in NA [1], most of which are VF related. Defibrillation

using electric shocks is the only choice of treatment espe-

cially for out-of-the hospital VF incidents in restoring the

heart to normal rhythm. During the process of resuscitation

it would be of immense help if the EMS personnel could

have a real-time feedback on the electrical state of the heart

so that they could choose the right combination of therapies

before applying the shock. While there exist many works

(including our previous work [2], [3]) that have analyzed the

pre-shock waveforms and predicted the outcome of shock

to be successful or unsuccessful, little to no work has been

done in predicting refibrillation after a shock in human VF

data. In cases of refibrillation, anti-arrhythmic drugs prior to

subsequent shocks could improve the survival rates [4], [5].

Hence predicting the state of refibrillation from the pre-shock

VF electrogram analysis is of critical importance that would

enable the EMS personnel to choose the pharmacological op-

tion before applying subsequent shocks which could convert
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these usually unsuccessful shocks to successful outcomes.

Over the years many techniques have been proposed

in predicting shock outcomes using pre-shock electrogram

analysis. Some of the well known features include median

or centroid frequency (CF), amplitude spectral area (AMSA),

scaling exponent (SCE), and wavelet-based entropy [3]. Our

previous work introduced a wavelet-based scale distribution

width feature that performed comparatively better in clas-

sifying the shock outcomes as successful and unsuccessful

categories [2], [3]. Wavelet analysis is better suited for VF

electrograms due to the non-stationary characteristics of VF

and the flexibility they provide in extracting morphologically

distinct features. Wavelet analysis is also computationally

less expensive and can be realized in hardware to provide

near real-time feedback. In the proposed work we extend

our previous work in predicting the state of refibrillation

in addition to successful and unsuccessful outcomes by

analyzing the pre-shock electrograms using wavelet analysis.

Fig. 1 shows the block diagram of the proposed work. The

paper is organized as follows: Section II provides details on

the database, Section III presents the methodology, Results

and discussions are presented in Section IV, and Conclusions

are provided in Section V.

II. DATABASE

The human VF database was extracted from the

defibrillator recordings collected during out-of-the-hospital

cardiac arrests by Toronto, Canada area EMS agencies

personnel, recorded using Zoll Inc. (Model AED Pro)

external defibrillators. Fourteen successful cases (criteria:

after shock, normal sinus rhythm at least for 60s), seven

refibrillation cases (criteria: after shock, less than 10 normal

sinus beats followed by VF), and thirteen unsuccessful

cases (criteria: after shock, continues to be in the state of

VF) were used in this study. All of the 34 pre-shock VF

electrograms were pre-processed to remove low and high

frequency artifact using a bandpass filter (2 to 10 Hz). In

choosing the pre-shock segments care was exercised that

the data was not corrupted by the CPR artifact. The length

of the pre-shock waveforms were restricted to a maximum

of 10s backwards from the start of the shock or the duration

that was not corrupted by the CPR artifact. Sample cases

of successful, refibrillation, and unsuccessful cases are

presented in Figs. 2 - 4.
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Fig. 1. Block diagram outlining the study

Fig. 2. A sample successful case showing the pre-shock, shock, and the
post-shock portions of the electrogram. The zoomed pre-shock waveform
in the inset not to scale.

Fig. 3. A sample refibrillation case showing the pre-shock, shock, and the
post-shock portions of the electrogram. The zoomed pre-shock waveform
in the inset not to scale.

III. METHODOLOGY

A. Wavelet Analysis

The proposed wavelet features are based on the continuous

wavelet transform (CWT). In CWT a signal x(t) is modeled

using all possible translated and dilated version of a mother

wavelet ψa,b where a and b are the dilational (or scale) and

translational parameters. It is given by

Fig. 4. A sample unsuccessful case showing the pre-shock, shock, and the
post-shock portions of the electrogram. The zoomed pre-shock waveform
in the inset not to scale.

Tx(a, b) =
1√
a

∫

∞

−∞

x(t) ψ∗

(

t− b

a

)

dt (1)

and the energy captured by a scale is given by

E(a) =
1

Cg

∫

∞

−∞

|Tx(a, b)|2db (2)

where Cg is the admissibility constant.

The signal x(t) in our case will be the pre-shock portion

of the VF waveform and the wavelet that was found to be

suitable for the analysis is Gaussian wavelet of order 6. Prior

to decomposing the VF waveforms the signals were filtered

as stated earlier and the filtered VF waveforms were then

segmented into 3s (i.e. 750 samples at 250 Hz sampling)

segments to mimic a real-time acquisition with a buffer of

3s data. The 3s window was then sequentially slided with

a 90% overlap for each translation of the window and the

data was decomposed using a range of wavelet scales.

B. Scale Distribution Width and Center Scales

Scale Distribution Width (SDW) is the width of the

normalized distribution of the energy captured by the scales

measured around the dominant scale at half the height of

the distribution [2]. The amount of energy captured by each

of the scales E(a) depends on the signal characteristics

and thus the normalized energy distribution of the scales
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is representative of the signal content. The width of the

distribution indirectly provides us a measure of signal

composition, for example the degree of multi or mono

component nature of the signal. Due to the inverse relation

between scale and frequency, SDW can be seen as a function

of frequency and bandwidth of a signal. SDW is computed

for each 3s segment of data to mimic a real time acquisition

and processing. The segments were slided with a 90% over

lap covering the entire lenght of the pre-shock waveforms.

Center Scales (CS) are the dominant scales extracted

from the normalized distribution of the energy captured by

the scales. Here dominant means the scale with the highest

energy [max(E(a))]. CS provides an indirect measure of

dominant frequency and in combination with SDW, provides

an index on the rate and morphological changes occurring

during VF. Similar to SDW, CS was computed for every

3s sliding segments with 90% over lap. Both SDW and CS

were extracted for all the 34 pre-shock waveforms and the

median value over all the sliding segments was extracted as a

representative feature for each of the 34 cases. So in total we

extracted a feature matrix of size 34 X 2 for the 3 categories.

C. Pattern Classification

We used a linear discriminant analysis (LDA) based

classifier [6] to evaluate the discriminating capacity of

the proposed features. Since the database size is small

we employed leave-one-out method (LOOM) for cross

validation. In LOOM, from a database of N samples, N-1

samples are used for training and the left out 1 sample

is used for testing. This is repeated by leaving out each

of the sample and training the classifier with the rest of

the samples and evaluating the classification accuracy with

the left out sample. After all the iterations, the average

classification accuracy is computed over all the iterations as

the final classification accuracy.

IV. RESULTS AND DISCUSSIONS

SDW and CS were extracted for all the 34 cases as

explained in the previous section. Figs. 5 and 6 show

the box plots of SDW and CS respectively for the 3

categories. The rectangular boxes show the 25th and 75th

percentile of the data and the horizontal line inside the

boxes show the median values of the feature distribution.

A direct 3 group classification (i.e. successful, refibrillation,

and unsuccessful) did not yield good results as could be

seen from the overlaps between the refibrillation with

the other groups in the box plots. However, analyzing

Fig. 5, we could observe that SDW demonstrates a better

separation between the successful and unsuccessful cases

and interestingly that most of the refibrillation cases are

overlapping with the successful cases. This could be inferred

as that refibrillation can be seen as a subclass of successful

category for the SDW feature. On the other hand, from

Fig. 6, although CS demonstrates separation between the

successful and unsuccessful groups, unlike SDW there is

an over lap between the groups. However, the distance

between the median of successful and the refibrillation

cases is comparable to SDW. Since the direct 3 group

classification did not yield good results but there seem to be

an imaginary boundary between successful and refibrillation

(i.e., medians of refibrillation fall towards the 75th percentile

of the successful category box), it motivates us to perform

a 2 level binary classification. The proposed scheme of

binary classification is shown in Fig. 7. By combining the

refibrillation cases with the successful cases, we obtain a

two class problem with “successful and refibrillation” in

one class and the “unsuccessful cases” in the other. For

this level 1, 2 class classification the SDW is expected to

perform better due to the fact the there is larger separation

between the combined successful and refibrillation cases

with unsuccessful cases in comparison with CS. For the

second level classification (i.e. between correctly classified

successful and refibrillation cases from level 1) we expect

SDW and CS to have comparable performance.

Refib
UnSucc
Succ


S
c
a

le
 D

is
tr

ib
u

ti
o

n
 W

id
th



65


55


45


35


25


15


5


Fig. 5. Boxplot of the SDW feature distribution for the 3 categories.

Method Groups Succ+Refib Unsucc Total

CV Succ+Refib 16 5 21

Unsucc 3 10 13

% Succ+Refib 76.2 23.8 100

Unsucc 23.1 76.9 100

TABLE I

CV: CROSS-VALIDATED: LINEAR DISCRIMINANT ANALYSIS WITH

LOOM METHOD, % - PERCENTAGE OF CLASSIFICATION.

Table 1 shows the results obtained for the level 1

classification using the LOOM method. From the table

we could observe as expected SDW performs better in

classifying the successful and unsuccessful cases with a
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Fig. 6. Boxplot of the CS feature distribution for the 3 categories.
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Fig. 7. Proposed 2 level binary classification scheme

classification accuracies of 76.5 % (with a p value of

0.0028). Out of the 21 (14 successful + 7 refibrillation

cases), 16 of them were correctly classified. We analyzed

the misclassified signals and found out of the 14 successful

cases, 3 were misclassifed and out of the 7 refibrillation cases

2 were, misclassified. For the second level classification

we discarded these misclassified signals to form a new

database with 11 (i.e., 14 - 3) successful cases and 5

(i.e., 7 - 2) refibrillation cases. We tested both CS and

SDW in classifying this new database into successful and

refibrillation.

Table 2 shows the results obtained for this level 2

classification using LOOM method. An overall classification

of accuracy of 75% (with a p value of 0.26) is achieved.

However focussing only on the refibrillation prediction,

although the level 2 classification shows a 80% accuracy

for detecting refibrillation cases, considering it is a 2

level classification effectively it is only 80% (level 2) of

76% (level 1) which is around 61%. For CS and SDW

we obtained the same results. The significance of the

statistical analysis in this study is limited due to the small

database size especially for level 2 classification with only

5 refibrillation cases.

Method Groups Succ Refib Total

CV Succ 8 3 11

Refib 1 4 5

% Succ 72.7 27.3 100

Refib 20 80 100

TABLE II

CV: CROSS-VALIDATED: LINEAR DISCRIMINANT ANALYSIS WITH

LOOM METHOD, % - PERCENTAGE OF CLASSIFICATION.

V. CONCLUSIONS

Predicting refibrillation using pre-shock waveforms has

immense benefits in assisting EMS personnel to choose

the right therapy in optimizing the resuscitation outcomes.

Using a real-world human VF database we have presented a

classification approach for a 3 group classification including

refibrillation. The proposed features that were introduced in

our previous work did demonstrate discrimination between

the 3 categories however with only a moderate effective

detection accuracy for refibrillation. Considering that every

opportunity to improve the shock outcomes is valuable the

proposed classification scheme has yielded positive results

and is one of the initial works on predicting refibrillation in

human VF. Future work involves in increasing the refibrilla-

tion database and verifying the robustness of the features.
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