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Abstract— The presence of the electrical alternans induces,
through the mechanism of the excitation-contraction coupling,
an alternation in the heart muscle contractile activity. In this
work, we demonstrate the cardiac alternans annihilation by
applied mechanical perturbation. In particular, we address
annihilation of alternans in realistic heart size tissue by
considering ionic currents suggested by Luo-Rudy-1 (LR1)
model, in which the control algorithm involves a combined
electrical boundary pacing control and a spatially distributed
calcium based control which perturbs the calcium in the cells.
Complimentary to this, we also address a novel mechanism
of alternans annihilation which uses a Nash Panfilov model
coupled with the stress equilibrium equations. The coupled
model includes an additional variable to represent the active
stress which defines the mechanical properties of the tissue.

I. INTRODUCTION
Ventricular fibrillation (VF) is a certain type of arrhythmia

that leads to sudden cardiac death (SCD) [1]. Experimental
studies [2] have shown that cardiac alternans are precursors
to the onset of much complex arrhythmias like the ventric-
ular tachycardia (VT) and VF. Alternans is a phenomenon
observed in cardiac cells, in which the cells exhibit beat to
beat alteration in the action potential duration (APD) when
paced at short pacing intervals. The cardiac cells exhibit
alterations as long(L)-short(S)-long(L)-short(S) pattern in
APD (see Fig.1, for L-S-L-S pattern in a cardiac tissue).
The action potential in cardiac tissue is associated with the
contractile properties of the tissue so physically alternans
are manifested as alteration in ability of the cardiac tissue
to produce complete contraction. Since alternans has been
associated with the onset of VF, it is important to explore
whether spatiotemporal alternans in cardiac tissue can be
annihilated in principle as the annihilation can represent an
effective strategy to annihilate heart arrhythmias in order to
prevent SCD.

Studies have shown that electrical pacing control can
successfully annihilate alternans in a single cell [1], [3], [4].
However, recent theoretical and experimental studies [1], [3],
[4], [5], suggest that such electrical pacing control applied
at the boundary of a cardiac tissue has finite controllability
(≈ 1cm), and real time alternans control realizations [6], [7]
cannot stabilize alternans in cardiac tissue exceeding ≈ 1cm
in length. Boundary pacing based control algorithms, are
realized by pacing at the boundary of the cardiac tissue
which is realized as modulating the pacing interval based
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on the consecutive APDs at the pacing site [4]. This con-
trol algorithm’s failure to annihilate alternans completely
in tissue exceeding ≈ 1cm length is due to the lack of
information of the evolution of alternans away from the
pacing site. This limitation with electrical boundary pacing
based controllers emphasize the need to look for electrical
stimulus-independent techniques to annihilate alternans in
medically relevant cardiac size tissue. Mechanical stimuli is
one of the types of electrical stimulus-independent method.

Mechanical stimulus is usually applied to a cardiac cell
in form of prod or a stretch. Through the mehano-electric
coupling this stimuli influences the electrical activity in the
cell which in turn affects the APD, see [8], [9]. In mechano-
electric feedback system calcium is the most important ionic
species that modulates the coupling in the cardiac cells [10],
so that beat-to-beat variations in electric wave are linked to
the alteration in the transient calcium concentration in cell
[11]. Muscle stretch or shortening affects the myocardium
which influences the shape and amplitude of the intracellular
Ca2+ transient [12].

This work considers a control protocol involving mixed
electrical boundary pacing control and a spatially distributed
calcium based controller for stabilization of alternans in a
1D cardiac tissue. We demonstrate alternans suppression
via mechano-electric feedback in both the 1D cardiac cell
ionic model and a 1D three variable Nash and Panfilov
[13]. We suggest a control method that employs a spatial
distributed calcium controller along with a electrical bound-
ary pacing controller to address alternans annihilation in a
medically relevant sized cardiac tissue. In the three variable
electromechanical model suggested by Nash Panfilov, we
apply a distributed mechanical control to show the effect
of mechanical feedback on stabilization of alternans.

II. IONIC MODEL
In this section, we study the control of alternans in a

1D tissue of length L = 6.25 cm. The ventricular action
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Fig. 1. Time evolution of transmembrane voltage showing discordant
alternans

978-1-4244-4122-8/11/$26.00 ©2011 259

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

Crown



potential is numerically reconstructed using the Luo-Rudy-1
(LR1) [14] ionic model. LR1 is a mammalian ventricular
cell based model which incorporates interaction between
depolarization and repolarization and is a updated version
of the Beeler-Reuter model [15] which also accounts for
the calcium dynamics in cardiac myocyte. The 1D model
of cardiac cell tissue is given by the following nonlinear
parabolic PDE as:

Cm
∂V (ξ , t)

∂ t
= D

∂ 2V (ξ , t)
∂ t2 − Iion(ξ , t)+ Ist (1)

Subject to boundary conditions,
∂V (0, t)

∂ξ
= 0,

∂V (L, t)
∂ξ

= 0 (2)

where, Ist refers to the electrical stimulus applied within [0,
0.025] cm i.e the first cell of the tissue, V is the transmem-
brane voltage and Iion are ionic currents as suggested by LR1
model. The constants, diffusion rate D = 10−3 cm2/ms and
membrane capacitance Cm = 1 µF/cm2. The voltage evolu-
tion in the Eq.1 is calculated using finite difference approx-
imation with mesh size ∆ξ = 0.025. Standard explicit Euler
integration scheme with step size ∆t = 0.05 ms is applied.
The electrical stimulus (Ist ) applied to cardiac myocytes,
activates it and causes it to undergo a fast depolarization
upstroke followed by a slow repolarziation that returns the
cells to their resting potential, in complete called as the action
potential duration (APD), (see Fig.1) The end of this action
potential is followed by a finite time interval before the next
action potential called as the diastolic interval (DI), which is
required by the ventricles to fill with blood (diastolic filling)
after a contraction, before the next activation. In case of a
short DI, the cells lack sufficient time to fully recover their
electrical properties which produces a short APD following
a short DI. Hence, the APD has a increasing dependence
in DI at lower DI values and is constant at higher pacing
periods which is governed by the restitution relations. The
S1S2 protocol can be used to develop the restitution curve
describing the APD and DI map is given as:

APDn+1 = f (DIn) (3)
Due to the diffusive coupling term in Eq.1 this action

potential propagates along length of tissue away from the
pacing site. In the simulations, APD is calculated between the
voltage values −50mV . It is well known fact that the cardiac
tissue will manifest electrical alternans when the slope of the
restitution curve is greater than unity at the critical pacing
cycle length (PCL). This indicates that at lower DI, i.e
at sufficiently short PCL the cardiac system shall undergo
alternans, which are manifested by an alternating pattern of
long and short APDs. The amplitude of alternans, an(ξ ), is
defined as:

an(ξ ) = APDn(ξ )−APDn−1(ξ ) (4)
where, n =beat number = t/τ Stabilization of such alternans
in a long tissue can be achieved by coupling traditional
electrical (at boundary) and spatially-distributed calcium
feedback control. The boundary applied electrical feedback
controller can be characterized as difference in APD values
feedback at the pacing site.

Tn(ξ=0) = τ + γ(APDn−1(ξ=0)−APDn−2(ξ=0)) (5)
where, τ is the basic pacing cycle period that is capable
of causing alternans in the tissue and γ is the adjustable
feedback gain for APD alternation at the pacing site. τ =
311 ms and γ = −0.21.

Previous works [6], [7], [5], have shown that simple
feedback gain at the pacing site can effectively stabilize
alternans only upto ≈ 1cm of length. This limitation reduces
the practical value of a controller based solely on gain based
modulation of pacing interval. To overcome this limitation,
several such gain based pacing interval modulators can be
placed multiple pacing sites but such a control in a real
heart adversely disrupts the normal voltage wave propagation
across the tissue. Instead, modulation of intracellular calcium
levels over a short length of tissue is used for the gain based
spatially distributed control of alternans described by Eq 1.
The calcium based spatially-distributed actuator is motivated
by recent studies [10], [11], [8], [12], which demonstrate
that stretching of the cardiac myocyte modulates the internal
calcium dynamics of the cell. The calcium dynamics has an
effect on the APD, and hence manipulation of this calcium
by an external source (viz stretch) [12] or from internal cell
storages to have a desirable effect on the length of APD
so as to annihilate the alternans. The spatially distributed
[Ca2+]-controller acts after the electrical boundary feedback
controller stabilizes a finite part of the tissue (≈ 1cm). The
spatially distributed [Ca2+]-controller utilizes the difference
between a stabilized delayed [Ca2+] at the pacing site and
[Ca2+]i over the length of area under spatially-distributed
control. The difference is used as input feedback correction
term [Ca2+]err(t) = [Ca2+]pacer(t− τd) - [Ca2+]i,control aug-
mented with the cell calcium dynamics in the LR1 model
given as:

[ ˙Ca2+]i(t) =−10−4Isi +0.07(10−4− [Ca2+]i)+ γ[Ca2+]err (6)

where, [Ca2+]pacer and [Ca2+]i,control are the intracellular
calcium concentrations measured at the pacing site and sites
under spatially-distributed control respectively. τd is the time
delay factor to account for the electrical wave propagation re-
sistance along the tissue length, i.e the measured [Ca2+]pacer
is compared with the [Ca2+]i,control taking into consideration
the time delay for the excitation of the i’th cell as compared
to the excitation at the pacing site. The calcium dynamics
demonstrates a lower peak [Ca2+] concentration in case of a
short APD in electrical alternans and a normal peak [Ca2+]
in case of a long. A spatially-distributed stabilizing [Ca2+]-
controller like this increases the height of the lower [Ca2+],
prolonging the APD for a short beat.

A. Numerical simulation experiments

In the numerical study of the model described by Eq.1
and ionic currents from the LR1 model, we use the control
protocol that couples electrical boundary control and spa-
tially distributed [Ca2+]-control to stabilize a tissue of length
over 1 cm without inducing conduction block. A medically
relevant size cardiac tissue of length L= 6.25 cm (> 1 cm so
that electrical pacing controller does not stabilize alternans
spatially in the entire tissue) was considered and electrical
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Fig. 2. Time evolution of amplitude of alternans showing annihilation of
alternans using a calcium based controller

control was applied at the first cell. After stabilization of
alternans in approximately 1 cm of the tissue the spatially
distributed [Ca2+]-control was applied over the region [3
3.5] cm. The tissue is initially paced at a sufficiently large
pacing interval for approximately 10− 15 beats and then
suddenly dropped to a lower pacing interval such that there
is no conduction block. The pacing interval for every beat
is reduced by 1 ms untill finally it drops to the basic pacing
period (BCL) τ = 311 ms, after that the pacing interval is
kept constant. Sustained cardiac alternans, an alternating long
and short APD sequence can be seen which if not controlled
leads to a conduction block (see Fig.1). For a longer lengths
of tissue like in this case, one can observe that spatially
there are two nodes where the phase of alternans changes
(as in Fig.2 between beat number 50 and 300). If no control
is applied the amplitude of alternans increases finally to
develop a conduction block from non pacing end of the
tissue. In orders to suppress these alternans the previously
discussed control strategy is employed to annihilate such
alternans. First electrical boundary pacing controller which
is based on the difference in amplitude of two consecutive
APDs is applied around beat number (n)≈370. Applying
such a control stabilizes the alternans along a finite length
of the tissue (≈ 1 cm) and the rest of the tissue manifests an
increasing amplitude of concordant alternans. The spatially
distributed Ca based controller is applied at n ≈ 450, the
actuator compares the calcium concentration at the boundary
( [Ca2+]pacer) with the calcium concentration of the cell to
be controlled ([Ca2+]i,control) and generates a control signal
to compensate for the error. The [Ca2+] based controller
successfully suppresses the alternans to up to ≈ 3 cm of the
tissue with a small constant amplitude of alternans towards
the non pacing side of the tissue. Such a combined electri-
cal boundary pacing based and spatially distributed [Ca2+]
based controller could successfully attenuate the amplitude
of alternans and avoid a conduction block coming from the
non pacing end of the tissue.

Direct measurements of intracellular [Ca2+] concentra-
tions is difficult. Hence implementation of the spatially
distributed controller can be carried out in two ways 1.
using the existing cardiac cell models to calculate the [Ca2+]
from local voltage (V) measurements or 2. the controller
can be based on a measurable quantity like mechanical
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Fig. 3. Stabilization of alternans in model described by Eqs.(7)-(14) by a
spatially distributed control signal based on the error ε1 defined in Eq.15, for
β = 0.002, D = 1, a = 0.05, k = 8, kTa = 47.9kPa , c̄ = 16kPa, µ1 = 0.1205,
µ2 = 0.3, ε = 0.01, ε(V ) = 1 for V < a and ε(V ) = 0.1 for V > a

deformations (stress) in the tissue. Therefore, in the next
section a numerical study showing the effect of mechanical
perturbations on cardiac alternans in a simple three variable
Nash-Panfilov model is discussed.

III. THREE VARIABLE NASH-PANFILOV MODEL
Its known that electrophysiological changes in a car-

diac tissue affects the mechanical contraction through the
mechno-electric feedback. Also, it has been shown that the
electrical properties of the tissue can be altered by mechani-
cal perturbations [16]. Simulating mechanical stress-stain and
electrophysiological models is computationally expensive
and complex. To reduce this complexity, simple two variable
models can be used to simulate a cardiac tissue. Although
such models do not incorporate a detail description of the
shape of the action potential, they are capable of reproducing
the basic macroscopic characteristics of a cardiac tissue.
In this section, we are interested in annihilation of cardiac
alternans by using mechanical perturbation. Since this is
concentrated on arrhythmias in a 1D cardiac tissue a simple
two variable Nash-Panfilov model is relevant as detailed
description of action potential shape is not necessary.
A. Electromechanical model for cardiac tissue

In this section, we consider a two variable Aliev-Panfilov
model derived from FHN-model which is further coupled
with mechanical stress and strain as proposed by Nash and
Panfilov [17]. For the mechanical coupling, a simple global
mechanoelectric feedback coupling is considered for small
cardiac cell deformations as suggested by Alvarez-Lacalle et
al. [18]:

Cm∂tV = D∂Xi(
√

CCMN
∂XiV )− f (V ) (7)

∂tr = (ε +
µ1

µ2 +V
)(−r− kV (V −a−1)) (8)

∂tTa = ε(V )(kTaV −Ta) (9)

∂X (SMN) = 0 (10)
where f (V )= kV (V−1)(V−a)−rV−Ig, V is dimensionless
transmembrane potential, r is the recovery variable, Ta is the
active stress, D is the diffusion constant, Xi are the fixed
reference or undeformed coordinates and SMN is the first
Piola-Kirchoff stress tensor.

B. Cardiac tissue mechanics
Due to the electrical activity in cardiac tissue the cells

deform to a new position xi from a undeformed or reference
configuration Xi. The deformation gradient tensor, F, that
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Fig. 4. Shows the time evolution of the deformation variable xi. The
change in the shape of the curve after 14000 ms is attributed to the action
of controller. The sudden expansion at the point of excitation is due to the
linear approximation of deformation gradient, F(X).

transforms the undeformed cell length to a deformed length
in 1D is defined as:

F =
∂x
∂X

= F(X). (11)

The Caushy-Green deformation tensor CMN is defined as:

CMN = FTF = F(X)2. (12)

For small deformations, the equilibrium conditions defined
in Eq.9 can be simplified to obtain a global feedback term
F(X) where the average values of active tension T̄a affect the
evolution of voltage given by:

F(X) = 1+[T̄a−Ta(X)]/c̄, (13)

T̄a =
1
L

∫ L

0
T (X)dX , (14)

at any particular position when T̄a > Ta, then the tissue
undergoes elongation or stretch. Current Ig described in Eq
(7) is active only when the cell stretches locally and it is
given as, Ig = (g/c̄)(V −1)(T̄a−Ta)

2.

The Nash Panfilov model in 1D with small deforma-
tion approximation is defined by Eqs.(7)-(13). Eqs.(7)-(8)
are evaluated numerically by semi implicit finite difference
method as time integration scheme with ∆t = 0.02 and
∆X = 0.1. For the mechanical model i.e Eqs.(13)-(14) a space
step ∆X = 0.6 is used. A cardiac tissue of length L = 7
cm was considered. The tissue is paced in such a way that
beat to beat alternations in the voltage APD are developed as
seen in Fig.3. Basic full state feedback algorithm which takes
error ε1 (see Eq.15) generated between two consequent APDs
provides a control signal which is applied over the region 3-
4.5 cm. The control signal is active only when ε1 < 0 due to
which the controller only acts on the long-APD (see Fig.3
after 14000 ms, when the controller is actived) . Thus, Eq(9)
is modified to incorporate the spatially distributed controller
yields the following error based control.

ε1 = (APDn−1−APDn−2) (15)

∂tTa = ε(V )(kTaV −Ta)+βε1 (16)

From Fig.3 we see that the alternans developed in the car-
diac tissue can be annihilated by using a spatially distributed
mechanical stress-strain based controller which was activated
at 14000 ms. Finally, Fig.4 shows the action of controller
over the region [3, 4.5] cm.

IV. CONCLUSIONS
The control algorithm suggested in this paper includes

a boundary pacing control with a spatially distributed non
electrical based controller. This spatially distributed con-
troller collects the information of alternans evolution in
a cardiac tissue away form the pacing site to generate
the necessary control signal. This method can successfully
annihilate alternans in a cardiac tissue exceeding 1cm length.
Numerical results showing the performance of the proposed
method was presented using a calcium based controller for
LR1 ionic model and also mechanical stress-strain based
controller using Nash-Panfilov model. The Nash-Panfilov
model can be further extended to a two dimensional problem
based on the numerical analysis provided by Whitely et al.
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