
  

  

Abstract—We have constructed a thermal stereoscope 
utilizing three digital SLR cameras and an infrared camera for 
rapid surface reconstruction of diabetic foot geometry and 
temperature distribution. A structured light pattern is 
projected on to the foot to provide approximately 2500 
reconstructed points. The reconstructed point cloud is then 
fitted to a finite element model, producing root mean squared 
errors of less than 0.4 mm. 

I. INTRODUCTION 
redictive biomechanical models of the foot need to 
accurately represent individual-specific surface 
geometry and underlying anatomy. This is especially an 

issue for diabetes patients who have foot deformities due to 
neuropathy and/or amputations [1-8]. In such cases the 
biomechanics of the foot are generally severely 
compromised and accurate analysis of loading is critical for 
optimising subsequent treatment and development of 
appropriate orthotic devices. While detailed anatomical 
information can be obtained from the analysis of magnetic 
resonance (MR) images of individuals, such approaches are 
too time-consuming and too costly to be used routinely in 
the clinic.  
   Neuropathy leads to loss of both sensation and control. 
This has significant consequences for diabetes sufferers who 
characteristically develop neuropathy, especially peripheral 
neuropathy in the feet. The loss of sensation removes the 
primary mechanism that alerts individuals to foot damage 
and infection – pain. 
   Nerve death also removes extrinsic control of foot 
muscles, resulting in further tissue and bone damage due to 
gait pathologies. Soft tissue inflammation often results from 
such infections and injuries. Although there is no pain felt by 
the individual, regions of tissue inflammation are often 
characterised by marked regional variations in skin surface 
temperature [9-13]. Current measurement systems monitor 
relatively few sites on the foot, or measure the temperature 
at the interface between the foot and a rigid platform. 
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    In order to characterize geometric and thermal changes in 
the diabetic foot in the clinical setting we propose the use of 
a multi-camera stereoscopic device that enables rapid, 
accurate, and inexpensive measurement of an individual's 
foot surface metrics, which will then be fitted to a finite 
element model. 

II. METHODOLOGY 

A. Design 

The Stereoscopic rig consists of three digital SLR cameras 
(Canon 450D), providing 4272 x 2848 spatial resolution. 
Thermal data is gathered through a microbolometer-based 
thermal imager (Xenics Gobi-384), capable of 50 mK 
sensitivity. A 1080 x 720 video projector (PLUS U3-1080) 
is incorporated to readily provide various structured light 
routines. The cameras and projector are mounted to a rigid 
aluminum frame via Manfrotto ball-and-socket tripod heads. 

These tripod heads are free to slide along the aluminum rails, 
allowing versatility in imaging volumes.  

Camera and projector control is operated via National 
Instruments’ LabVIEW 2009. DSLR properties are adjusted 
via USB, while focus and shutter control are hardware-
triggered using an NI USB-6008 data acquisition board, 
sending synchronized digital signals to each DSLR’s 
dedicated triggering jack. The IR camera is currently 
software-triggered via a gigabit ethernet connection, but can 
also be hardware-triggered using a CameraLink interface. 
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Fig. 1. Solidworks model of the thermal stereoscope rig. Unlabelled 
components refer to the aluminum support structure. 
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B. Structured Light 
An initial structured light routine bas
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geometry calculated between camera views
moved throughout the imaging volume. A
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Fig. 2. Section of bitmap generated from pseudoran
three by three block of color-subunits appears only 
array. Note: numbers are superimposed to different
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The above camera calibration 
projection matrices from which 
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D. Geometric and Thermal Reconstr
Lines in space are back-projec

center, through each set of image c
the specific PR codewords. A world
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The PR pattern is not visible to t
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center. Temperature values are re
projected line hits the IR image pl
the world point. 

E. Finite Element Modeling 
The reconstructed point cloud w

element model of the foot, deve
Bioengineering Institute. This mode
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Project dataset.  
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surface of the foot if they lay within
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closest face. Fitted results were 
abnormal geometry. Fitting was 
affected nodes fixed in their or
iterations were performed until the
the fitted surface and the original da

A similar method was applied 
distribution. A uniform temperatur
entire surface of the model. This va
to clearly discriminate between data
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Fig. 3. Two views of a reconstructed poin
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III. RESULTS 

A. Foot Reconstruction 
A healthy subject’s foot was reconstruct

set of images (Fig. 3), producing appr
points, at a point-to-point separation of 2 m
is evident around the toes. 

B. Model Fitting 
   A finite element model converged on the s
after 7 iterations, producing an RMS error o
0.39 mm. From Fig. 4 it can be seen that the
around the toes has led to relatively poor rec
this region. 

 
Fig. 6. Original IR image. White regions of the p
approximately 31 ºC. 
 

Fig. 4. Face-fitted finite element model of a health
displaying surface geometry. 

Fig. 5. Face-fitted finite element model of a health
displaying surface geometry and temperature distribu
regions on the plantar surface appear darker. 

ted from a single 
roximately 2,500 

mm. A loss of data 

same point cloud 
of approximately 
e lack of data 
construction in 

Fig. 5 demonstrates a fitted temperat
geometry-fitted finite element mode
qualitatively compared to the false-c
of the foot (Fig. 6).  

C. Preliminary Validation 
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Fig. 7. Absolute error or reconstruction vs.
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Fig. 8. Absolute error or reconstruction
coplanar crosshairs 
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horizontal and vertical orientations. Reconstruction 
performance was evaluated by cylindrical least squares 
fitting in MATLAB, using the Least Squares Geometric 
Elements library from EUROMETS, providing an estimated 
radius and RMS error of the data relative to the estimated 

radius. Both horizontal and vertical orientations of the 
cylinder provided accurate estimates up to the known 
resolution of the cylinder. 

IV. DISCUSSION 
The preliminary results of the thermal stereoscope 

indicate promise for its application in a clinical environment. 
Over an 80º range, metrics were estimated to within 0.2%. 
These metrics suit the imaging profile of the diabetic foot, as 
most neuropathic ulcers appear on the plantar surface of the 
foot [16]. However, a wider range of surface orientations 
may be accurately reconstructed if more cameras are added 
to the periphery of the stereoscope.  

Structured light routines can be expected to degrade the 
accuracy measure, though the use of Morano’s PR array 
provided sub-millimeter-accurate estimates of a curved, 
featureless surface. A large fraction of the projected codes 
were lost beyond the border of the foot. Furthermore, this 
lighting approach broke down around the borders of the toes, 
due to high depth discontinuities and occlusion from the ball 
of the foot. Alternative methods, such as Zhang’s multi-pass 
dynamic programming approach may resolve this issue [15].  

The current point cloud density provides similar 
resolution to that used in MR-generated finite element 
meshes used in the diabetic foot literature [7,8]. As the 
stereoscope requires a single calibration for multiple 
reconstructions, and relies on a single image set per 
reconstruction, it has the potential to reduce turnaround 
times in the clinic.  

The inclusion of an IR camera provides a high resolution, 
novel description of surface temperature distribution. This 
non-contact measurement approach may have advantages 
over previous methods, as the entire plantar surface of the 
foot can be measured. 

Further investigation is required to validate the 
stereoscope’s performance throughout the working volume 
and its ability to image highly varying surfaces. A 
quantitative evaluation of temperature fitting is also to be 
performed. 
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TABLE I 
CYLINDER RECONSTRUCTION 

Cylinder Orientation Estimated Radius 
(mm) RMS error (mm) 

Horizontal 55.0094 0.0267 
 

Vertical 55.0074 0.0278 

Curved-surface validation by reconstruction of a PVC cylinder 
(Radius = 55mm). Orientations reflect the alignment of the cylinder 
axis. 
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