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Abstract— Falling is one of the leading causes of serious
health decline or injury-related deaths in the elderly. For
survivors of a fall, the resulting health expenses can be a
devastating burden, largely because of the long recovery time
and potential comorbidities that ensue. The detection of a fall
is, therefore, important in care of the elderly for decreasing the
reaction time by the care-givers especially for those in care
who are particularly frail or living alone. Recent advances
in motion-sensor technology have enabled wearable sensors
to be used efficiently for pervasive care of the elderly. In
addition to fall detection, it is also important to determine the
direction of a fall, which could help in the location of joint
weakness or post-fall fracture. This work uses a waist-worn
sensor, encompassing a 3D accelerometer and a barometric
pressure sensor, for reliable fall detection and the determination
of the direction of a fall. Also assessed is an efficient analysis
framework suitable for on-node implementation using a low-
power micro-controller that involves both feature extraction
and fall detection. A detailed laboratory analysis is presented
validating the practical application of the system.

I. INTRODUCTION

Falls are the leading cause of injury and death among
elderly [1]. In the WHO report of 2002, fall-related mortality
rate was at 6 % [2] just slightly under the injury mortality
rates in wars. Globally, 4 out of 10 falls are fatal in persons
over 70 [2]. Fortunately, not all falls result in death - but post-
fall injuries can often be very severe and lead to increased
disability and an extended period of rehabilitation. 20-30%
of those who fall suffer from moderate to severe injuries such
as lacerations, hip fractures, or head traumata. These injuries
usually trigger a rapid decline in health [3] and increase the
risk of early death [4]. Women are more likely than men to be
injured in a fall, leading to twice the rate of hip fractures [5].
One of the most serious dangers of a fall is the potential for
a long period spent on the ground after a fall, often caused
by a delayed discovery of the fallen person. Half of those
who experienced an extended time lying on the ground died
within 6 months of the fall [6].

There are several risk factors that could lead to falls. These
include changes in the cognitive, visual, musculoskeletal,
sensory or cardiovascular systems due to ageing, as well as
extrinsic factors normally related to the environment such
as trip hazards and poor lighting [7]. In many cases, falls
are a combination of these factors [8]. When a fall occurs,
a rapid response by trained staff is essential. However,
this is not always possible if the elderly lives alone or in
remote areas that are not easily accessible. Thus, there has
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TABLE I
PREVIOUS APPROACHES IN FALL DETECTION

Sensors Used Location References
Triaxial Accelerometer Waist Worn [12][15]
Triaxial Accelerometer Behind the Ear [16]
Triaxial Accelerometer Waist, Wrist and Head [17]
Triaxial Accelerometer
and Gyroscope Chest and Leg [18]
Gyroscope Trunk [13]
Triaxial Accelerometer Carried Mobile Phone [19]
Triaxial Accelerometer
and Air Pressure Sensor Waist Worn, Wrist Worn [20], [21], [14]

been much research interest in fall-alerting systems. Existing
commercial systems include the neck-worn pendant systems
requiring the elderly to push a button after a fall. Sometimes,
the fall victim suffers from a loss of consciousness rendering
such systems ineffective [9].

Recently, a number of automatic methods for fall detection
have also been proposed. Automatic systems for fall detec-
tion can be based on vision [10], sound [11] or wearable
sensing. Wearable sensors for fall-detection generally use ac-
celerometers [12], gyroscopes [13] or a combination of sev-
eral sensing modalities and devices [14]. The miniaturisation
in electronics combined with on-node processing and their
ease of use has made them the method of choice for effective
and cost-efficient fall detection techniques. Although the use
of a group of sensors on different body parts could lead to
higher detection rates, it could impair wearability and patient
compliance, thus limiting its practical use. It is therefore
desirable to use one single wearable device that is simple and
easy to use. Within the research community, fall detection has
been a well-researched area and Table I highlights some of
the recent techniques used for fall detection using wearable
sensors.

Clinically, in addition to detecting the occurrence of falls,
it is very important to recognise the direction of a fall, which
could further indicate the weakness in particular joints and
fractures. A sideways collapse, for instance, may result in
a femoral neck fracture, which can put great strain on the
elderly due to its long rehabilitation and possible constraints
on the quality of living. Directional information can shed
light on possible causes of the falls and help decrease
reaction time. In this study, our primary aim was to detect,
as well as recognise the direction of falls. This was achieved
by using a waist-worn sensing device encompassing a 3D
accelerometer and a barometric pressure sensor.
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TABLE II
FALL DETECTION PROTOCOL

Activity Fall/Non Fall
1 Forward collapse (fall on knees) F
2 Forward collapse (lie down) F
3 Forward collapse with attempted getting up F
4 Backward collapse (end up in sitting position) F
5 Backward collapse (end up lying down) F
6 Backward collapse with attempted getting up F
7 Sideways collapse (right) F
8 Sideways collapse (left) F
9 Fall from chair (slide) F

10 Fall with recovery (then walking) F
11 Fall with recovery (then standing) F
12 Collapsing into a bed F
13 Fall from bed (trying to get up, then fall) F
14 Sitting down on a chair N
15 Standing up from a chair N
16 Collapsing into a chair N
17 Resting against a wall, then sliding down N
18 Lying down on a bed N
19 Getting up from a bed N
20 Jumping N
21 Pick up something from the floor N
22 Bend forward and tie shoe laces N
23 Take the lift down N
24 Take the lift up N
25 Walk down stairs (6 steps) N

II. METHODOLOGY

A. Experimental Setup

The sensor used in the study was a 6cm long and 2cm
wide waist-worn sensor composed of a triaxial accelerometer
ADXL330 with a full-scale range of ± 3g and a barometric
pressure sensor (VTI SCP 1000-D01) with a resolution of
1.5 Pa in high-resolution measurement, integrated with a
BSN (Body Sensor Networks) wireless sensor node [22]. 12
healthy subjects (8 male and 4 female, average age of 26.25)
wore the sensor and performed the activities shown in the
protocol of Table II with informed consent. The protocol
is classified into a group of falls and a list of activities of
daily living, which in some cases could be mistaken for falls.
The subjects simulated falls on a 20cm thick mattress on
the floor. We asked the subjects to remain on the mattress
for 15-25 seconds after the fall to simulate the lying down
period experienced by some elderly fallers. Certain activities
include stage where one attempts to get up from the fall, and
even the successful recovery from the fall. This is to ensure
a realistic scenario in which an elderly person is struggling
to get up again. The sampling rates for the sensors were 10
Hz both for the accelerometer and for the pressure sensor.

B. Feature Extraction

The accelerometer data required preprocessing by sub-
tracting the zero-g-bias level on each axis. The zero-g-bias
describes the output voltage under solely gravitational forces
(with g=9.81 m/s2). It can be calculated by subtracting the
output in one direction from the output rotated by 180◦. The
accelerometer is then correctly calibrated.

The processing required for fall detection is designed in
such a way that it is amenable to on-node processing by
the BSN low-power on-board micro-controller. As shown
in Fig. 1, the detection method consists of two processing
stages with an empirically determined threshold. Hence the
different types of falls may vary in impact, tilt angle and
direction, different methods of detection have to be combined
to encompass the different characteristics of falls. For the
calculation of ratios, a time window is set for all features
which looks at 50 samples at a time and uses 80% thereof
as ”previous values” and 20% as the ”most recent ones”.

Fig. 1. Fall detection algorithm.

The first threshold stage is designed to detect falls which
stand out by either a sudden change in orientation but not
necessarily a hard collision, or falls lacking a tilt angle but
with a strong impact which would indicate a fall. Nonethe-
less, most falls can be characterised by a combination of a tilt
angle and impact or acceleration peaks for which the second
stage has been designed. The features selected for this work
are:

• The magnitude of a moving-window standard deviation
per axis: |σxyz| =

√
σ2
x + σ2

y + σ2
z This feature is sen-

sitive for rotations even without a change of acceleration
magnitude, allowing the detection of sudden tilt change.
The ratio of σxyz is calculated per window (containing
both previous and current values) and compared with a
selected threshold.

Fig. 2. The left figure shows polar angle θ and azimuth angle φ and the
right shows the rotation of the coordinate system by the angle α around the
z-axis
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• The standard deviation of the vector magnitude:
σa = σ(

√
x2 + y2 + z2) This feature was selected in

order to capture sudden changes in acceleration that are
not necessarily combined with a change in tilt angle
of the body, an example is a fall on knees. Thus,
this feature detects sudden changes in signal magnitude
(peaks) which could reflect an impact caused by a fall.
Dividing the most recent values of σxyz by earlier
values of a time frame describes the instantaneous rate
of change.

• The ratio of the polar angle θRatio calculated in con-
secutive windows of 20 samples. Polar angle θ (shown
in Fig. 2) is calculated with arccos(z/

√
x2 + y2 + z2)

from pre-processed accelerometer data. This angle re-
flects the body-tilt and a sudden change could be
indicative of a fall. The angles refer to a coordinate
system associated to the sensor. In addition, the ratio
of the instantaneous angle θ and its earlier values in a
narrow time window reflect a sudden tilt angle change.

• The difference in the values of the polar angle in
consecutive windows ∆θ is also calculated. ∆θ also
aims to encompass large differences in tilt angle.

For all falls, the barometric pressure sensor data is checked
for changes accompanying the fall. If the barometric pressure
rises along with the features aforementioned, it is very likely
that the person fell.

C. Detection of Fall Direction

To detect the direction of a fall, we assumed that the z-
axis of the sensor is aligned with the vertical axis of the
subject’s body. The fall direction can then be calculated
with the azimuth angle φ using arctan2(y/x) (Fig. 2)
on pre-processed accelerometer data. The sensor and body
have separate coordinate systems caused by differences in
sensor positioning. With the assumption of the z-axis as
being vertical, or close to being vertically arranged, a 2D
coordinate transformation suffices for the determination of a
fall’s direction [23]. Aligning the sensor and the body allows
us then to detect the fall direction. A calibration stage was
performed by tilting the sensor in a specified direction in
the x-y-plane which gives us rotation angle α. Fig. 2 shows
the angle α which is the rotation angle between the two co-
ordinate systems. This rotation angle was used to conduct a
2D-cartesian coordinate transformation with rotation matrix
R to align sensor and body co-ordinate systems around the
z-axis in the x-y plane.

The vector p1 =
(
x1 y1 z1

)T
describes the sensor’s

vector direction with respect to the sensor’s coordinate
system before rotation (p2 accordingly) and provided x1 =
cos(φ) and y1 = sin(φ), an anticlockwise rotation around
the z-axis with rotation angle α results in: p2 = Rp1 with
x2 = cos(φ+ α) and y2 = sin(φ+ α).

III. RESULTS

The data analysis, containing a total of 297 sequences,
was performed in two steps as presented in the previous
sections. The first step was the detection of those falls

resulting in an accuracy of 81.48%, a specificity of 83.33%
and a sensitivity of 79.08%. The barometric pressure sensor
combined with the accelerometer increased the accuracy to
86.97%, specificity to 85.24% and sensitivity to 87.77%.
Motions such as falling forward on the knees or jumping
were difficult to classify for some subjects due to small
change in pressure (height difference sometimes less than
30cm) or lacking tilt angles.

Fig. 3 shows a forward fall with attempted effort by the
subject to get back up. The high peak of σa indicates a
very strong fall impact and θRatio shows a sudden change in
vertical orientation as the ratio is higher than 1.5 at its peak.

Most falls in Table II had a predetermined fall direction.
The Confusion Matrix in Table IV gives the results for the
prediction of fall direction. Here the predicted classes match
the actual ones with 94.12% accuracy.
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Fig. 3. The three graphs show features ∆θ, σxyzRatio and θRatio for
a forward fall with attempted getting up. The upper line in 3(a) shows the
momentary values of θ, while the lower line shows the difference ∆θ of the
new values from the old ones. Graph 3(b) shows the two moving standard
deviation ratios. Graph 3(c) shows the change in angle with θRatio. We
can clearly see the person struggling on the floor in both ∆θ and θRatio

after the fall - without recovery as the angle θ (black) does not return to its
base level in 3(a).

IV. DISCUSSION AND CONCLUSION

In this paper, we have proposed a system in which subjects
wear a waist-worn wireless sensor for the detection of fall
occurrence and orientation. The technology aims to detect
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TABLE III
ACCURACY, SPECIFICITY, SENSITIVITY OF THE FALLS

Fall- Non Fall Classification Results
Accelerometer Accelerometer + Pressure Sensor

Accuracy (%) 81.48 86.97
Specificity (%) 83.33 85.24
Sensitivity (%) 79.08 87.77

TABLE IV
CONFUSION MATRIX SHOWING DETECTED DIRECTION VERSUS ACTUAL

DIRECTION

Predicted Classes
Forward Backward Left/Right

Actual Forward 41 0 2
Classes Backward 1 52 1

Left/Right 1 2 19

impacts due to sudden falls as well as detect sudden changes
in tilt or posture.

The complexity analysis of this algorithm resulted in a
linear complexity O(n) and is therefore suitable to run on a
sensor if ported to a simpler implementation.

A limitation of this study, which is common in previous
literature, is that falls were simulated by young subjects
rather than elderly subjects. Most falls occurred on a mat-
tress, which suggests that the impact could potentially differ
from falls on harder or more unpredictable surfaces.

Even with the assumption of a vertically arranged z-axis
the results for the directional fall identification are satisfac-
tory with an accuracy of 94.12%. However, this assumption
was made under the restrictions of sensor positioning. This
directional information will offer valuable clues for how the
person fell, e.g. after regaining consciousness and/or after
experiencing possible disoriented movements shortly after
the fall. The basic framework of this study can be extended
to further studies in which falls may be detected regardless
of the location of the sensor and the device’s orientation.
This would require calibration of the sensor in at least 2
different directions: standing upright position and lying down
(to define the x-y-plane). This would require a 3D Cartesian
coordinate transformation so that the two different coordinate
systems become aligned and so that the results would be
independent of the device’s orientation.
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