
Abstract—Continuous glucose monitoring systems are an 
integral component of diabetes management. Efforts to 
improve the accuracy and robustness of these systems are at 
the forefront of diabetes research. Towards this goal, a 
multi-sensor approach was evaluated in hospitalized 
patients. In this paper, we report on a multi-sensor fusion 
algorithm to combine glucose sensor measurements in a 
retrospective fashion. The results demonstrate the 
algorithm’s ability to improve the accuracy and robustness 
of the blood glucose estimation with current glucose sensor 
technology.  

I. BACKGROUND  
Continuous glucose monitoring (CGM) systems 

provide an estimate of an individual’s blood glucose level 
on a near-continuous basis (every few minutes) [1]. 
Current CGM systems are considered adjunctive devices 
and, as such, a user must obtain a capillary fingerstick 
glucose measurement prior to instituting any change in 
therapy. Even with current limitations, CGM use in 
children and adults with diabetes has been associated with 
reductions in both HbA1c levels and the frequency of 
severe hypoglycemia [2-4]. 

In the future, the hope is that CGM data will be used to 
make automatic adjustments in therapy achieve better 
glucose control with the ultimate goal being a fully 
automated insulin delivery system. CGM performance is a 
significant factor to achieving this goal [5]. However, the 
accuracy of CGM systems available today may not be 
well-suited for this application [6]. Rather than focusing 
on hardware improvements, we evaluate the use of 
redundancy with current technology by developing a 
means to intelligently combine the data from multiple 
glucose sensors to improve CGM accuracy and 
robustness.  

II. ALGORITHM INTRODUCTION 

A. Data type applied 
The algorithm described in this paper will apply to any 

CGM data set with several sensors of the same type. 
These sensors monitor the same patient at the same time 
and provide periodic near-continuous measurements 
(Table I). This algorithm has been applied to CGM data 
collected in ten patients admitted to Thomas Jefferson 
University Hospital (Philadelphia, PA). Each patient data 

set contains, on average, 53 hours of data from six 
interstitial fluid glucose sensors. The output (in 
nanoamperes) from each sensor is reported every minute. 

B. Step 1 processing 
The purpose of first step in CGM data processing is to 

remove isolated glitches in individual sensor data. A 
relatively small window of size w1 is selected. 

 
TABLE I 

PATIENT DATA SET 
Time 1 ... t t+1 … t+w1 … T 
Sensor 1 s1,1 ... s1,t s1,t+1 … s1,t+ w1

 … s1,T 
Sensor 2 s2,1 … s2,t s2,t+1 … s2,t+ w1

 … s2,T 
⁞         
Sensor N sN,1 … sN,t sN,t+1 … sN,t+ w1

 … sN,T 
     

In a patient data set with N sensors, each individual 
sensor data point is represented as sn,t where n=1,2,…,N 
denotes the nth sensor and t=1,2,…,T denotes the 
chronological order of the point. The window moves 
point by point, calculating the difference dn,t between sn,t 
and sn,t+w1 for each sensor, generating an N-element array 
at time t.  

A k-mean algorithm with k=2 is applied to this array to 
separate the sensors into two groups. The group with the 
numerical majority is assumed to contain the sensors that 
are tracking the true glucose concentration. The data 
points between t and t+w1 associated with the majority are 
labeled valid. If the two groups have equal number of 
sensors, all data points between t and t+w1 are labeled 
valid. Every data point data will be evaluated w1 times 
except for the first and last w1-1 data points. If the 
majority of the evaluations are valid, the data point will 
be considered a true data point; otherwise, it will be 
marked as a false data point. 

Sensors with high percentage of false data points are 
identified for removal during final processing. The 
frequency of false data points is compared to a predefined 
threshold. The ith element of an N-element array p1 will be 
set to 1 if the ith sensor is to be removed and 0 otherwise. 

False data points from the remaining sensors are 
replaced with interpolated values. For example, if data 
points between sn,t1 and sn,t2 are false, a line is constructed 

Improved Blood Glucose Estimation through Multi-Sensor Fusion 
 

 

Feiyu Xiong, Graduate Student Member, IEEE, Brian R. Hipszer, Member, IEEE, Jeffrey Joseph, and 
Moshe Kam, Fellow, IEEE 

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 377

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



between these two points and sampled at times t1 < t < t2. 
The false data points are replaced by the corresponding 
sampled values. 

In our application, the number of sensors is 6 (N=6), 
the number of data points per sensor varies depending on 
the patient data set (1666 ≤ T ≤ 3325), the window size is 
10 minutes (w1=10), and the threshold frequency for false 
data points is 0.3. w1 is chosen to be a relatively small 
compared to T and the threshold frequency is empirically 
determined to provide the best separation between good 
and poor performance in several simulation tests. 

C. Step 2 processing 
The purpose of the second step is to identify and 

remove sensors that have a weak correlation with the 
group. A window with a size larger than w1 is used here. 
The window of size w2 minutes moves hour by hour until 
it reaches the end of the patient data set. At time t, the 
window contains the data from t to t+w2 for all sensors. 
Then an N×N correlation matrix is generated that contains 
the linear correlation coefficients between each pair of 
sensors (Table II).  

 
TABLE II 

CORRELATION MATRIX 
Sensor 1 2 3 4 5 6 
1 1 0.3851 0.3461 0.8614 0.7823 0.6721 
2 0.3851 1 0.7538 0.6784 0.6351 0.6968 
3 0.3461 0.7538 1 0.6487 0.5078 0.7693 
4 0.8614 0.6784 0.6487 1 0.8933 0.8342 
5 0.7823 0.6351 0.5078 0.8933 1 0.7698 
6 0.6721 0.6968 0.7693 0.8342 0.7698 1 
 
The sum of each row of the correlation matrix is 

calculated and the k-mean algorithm with k=2 is applied 
to this N-element array to separate it to two groups. The 
group with larger centroid contains the best-correlated 
sensors at time t.  

In the similar fashion as in step 1, the data points 
between t and t+w2 associated with the best-correlated 
sensors are labeled valid. Every data point data will be 
evaluated w2/60 times except for the data points in the 
first and last hour. If over half of the evaluations indicate 
this data point is valid, it will be considered as true data 
point; otherwise, it will be marked as a false data point. 

After window has moved over the entire data set, the 
number of hours containing false data points is tabulated 
for each sensor and stored in an N-element array p2 for 
use final processing. 

In our application, the window size for step 2 is 360 
minutes (w2=360). 

D. Final processing 
The final step of the algorithm integrates the results 

from steps 1 and 2 to identify the best-performing sensors 
in the patient data set. Excluding the sensors identified for 

removal in step 1, the sensors with the least false hours in 
step 2 are selected. These sensors are averaged to produce 
a final composite output. 

The selection logic of this final step is illustrated in the 
following example. The patient data set has 6 sensors.  
The results from steps 1 and 2 are given in Table III. 
Sensors 1 and 2 are excluded based on Step 1 processing. 
Out of the remaining sensors, 3 and 5 have the lowest 
values in p2. These sensors are selected and averaged. 

 
TABLE III 

AN EXAMPLE FOR FINAL PROCESSING 
sensor 1 2 3 4 5 6 

p1 1 1 0 0 0 0 
p2 5 29 6 10 6 23 

 

III. DATA AND EVALUATION CRITERION 
The data used to evaluate algorithm performance is 

from the project entitled “Artificial Pancreas for Control 
of BG and Insulin Levels in Hospitalized Patients with 
Diabetes and Stress Hyperglycemia” sponsored by the 
Department of the Army under the Technologies in 
Metabolic Monitoring Initiative. The project’s purpose 
was to evaluate two glucose sensing technologies in the 
preoperative setting in diabetic patients and patients with 
stress hyperglycemia. One of the technologies was the 
Telemetered Glucose Monitoring System (TGMS). The 
TGMS is a research-only device and predecessor of the 
Guardian REAL-Time System (Medtronic Diabetes, 
Northridge, CA).  

Ten surgical patients were studied (TABLE IV). 
Immediately prior to surgery, six TGMS sensors were 
placed on each patient. The sensors were placed into the 
fatty tissue of the upper arm, upper thigh, and/or abdomen 
(Fig. 1) and connected to transmitters that wirelessly 
transferred the sensor data to a bedside computer.  

 

 
Fig. 1. Telemetered Glucose Monitoring System (TGMS) 

 
Patients were studied for up to 60 hours in the 
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perioperative period. Each sensor provided measurement 
of the interstitial fluid glucose concentration every 
minute. In addition, reference blood samples were 
collected to calibrate and evaluate sensor data. Reference 
blood samples were obtained from an artery catheter 
every 20 minutes and central venous line every 60 
minutes. All samples are assayed for the concentration of 
glucose using an OMNI 9 Blood Gas Analyzer (Roche 
Diagnostics). The reference blood source used for each 
patient differed depending on the ability to consistently 
obtain blood from either the artery or central vein 
(TABLE IV). Reference data may not be available for the 
entire sensor wear period if the sampling catheter failed 
prematurely. On average, venous reference data covered a 
longer period than arterial reference data although arterial 
blood was sampled more frequently. 

 
TABLE IV 

REFERENCE BLOOD SOURCE AND PATIENT DEMOGRAPHICS 
 

Patient 
ID 

Reference Blood 
Source Sex 

Age 
(yr) 

BMI 
(kg/m2) 

Sensor Wear 
(hrs) 

A2 Arterial F 53 46.1 58.5 
B2 Arterial M 73 31.6 43.6 
A3 Arterial F 47 19.1 59.9 
B3 Arterial M 55 22.7 35.7 
C2 Arterial M 68 22.3 32.6 
C3 Venous M 58 22.9 59.4 
D3 Venous M 59 29.5 59.7 
E3 Venous F 51 20.7 60.9 
F3 Venous M 56 27.8 59.8 
D2 Venous M 63 36.4 60 

 
The algorithm was implemented on a continuous block 

of data that began 6 hours after the last sensor was 
inserted, starting the postoperative period. In order to 
quantify the performance of the algorithm, the Mean 
Absolute Relative Deviation (MARD) was calculated. 
The formulation for MARD is 

∑
−

=
x

yx
n

MARD 1  

where x and y are paired values of calibrated sensor data 
and the reference data, respectively, and n is the number 
of paired values. Sensor data are recalibrated every 6 
hours using reference glucose data. Reference data used 
for calibration were excluded from MARD calculations. 

IV. RESULTS AND DISCUSSION 

A. Results 
Algorithm results for all patients except A2, A3 and E3 

are shown in the Table V where the best-performing 
sensor(s), as chosen by the algorithm, are highlighted. For 
example, Sensor 6 is selected as the best-performing 

sensor in D2. If all the raw sensor data and reference data 
are plotted together (Fig. 2), it is apparent that trajectory 
of Sensor 6 matches reference data best, demonstrating 
the algorithm selected the correct sensor as best-
performing sensor without having any knowledge of the 
actual blood glucose levels.  

Alternatively, to quantitatively assess the algorithm 
performance, MARD from the algorithm’s composite of 
the “best-performing” sensor(s) is compared to the 
MARD from (1) the average of all sensors and (2) the 
best individual sensor. In all cases, the composite MARD 
was lower than the all-sensors average (Table VI). 
Averaged over all patients, the MARD for the composite 
is 0.0917 versus 0.1175 and 0.0990 for the all-sensors 
average and the best sensor. The algorithm provides an 
average MARD decrease of 2.6% compared to the 
straight-forward averaging of all sensors. Moreover, the 
composite MARD is lower than the best individual sensor 
in all cases except C3.  
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Fig. 2. Algorithm results and comparison for raw sensor data 

and reference glucose data for Patient D2 

B. Exceptions 
The data for patients A2, A3, and E3 are considered 

exceptions because unique circumstances impact the 
algorithm’s performance. For patient A2, the row-sum of 
the correlation matrix is [5.79 5.33 5.66 5.79 5.80 5.80]. 
These numbers indicate that all the 6 sensors are highly 
correlated. Indeed, p2 is [0 4 1 1 7 1]; its mean is the 
lowest among all the patients. Every sensor placed on 
patient A2 is performing well (Fig. 3(a)) but the current 
algorithm cannot make that distinction. For patient E3, all 
sensors exhibit a high level of noise. Every sensor placed 
on patient E3 is performing poorly (Fig. 3(b)). The row-
sum of the correlation matrix is [3.28 3.08 2.08 3.52 3.03 
2.86], indicating poor correlation among all the sensors. 
The current algorithm can neither identify nor improve 
the situation with patient E3. For patient A3 (Fig. 3(c)), 
algorithm fails. In step 2 processing, the algorithm 
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determines Sensors 2 and 3 should be excluded. The vast 
majority of the step 2 false points for these sensors occur 
in the latter half of the data set. However, these sensors 
initially outperform all other sensors and their exclusion 
greatly impacts the MARD calculation.  

C. Discussion 
The algorithm appears to be robust when handling 

different situations. It is able to identify a single optimally 
performing sensor as is the case with patients D2 and D3. 
Whereas, with patients B2 and B3, it identifies a group of 
four sensors whose composite outperforms both the best 
single sensor and the average of all six sensors. In all 
cases, the algorithm did not have any knowledge of the 
reference glucose concentrations during the selection 
process. However, this analysis is retrospective and only 
included a small number of patients. Moreover, because 
of the limited sample size, it is impossible to determine 
whether sensor performance is related to subject weight, 
gender or sensor location. 
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Fig. 3. Raw sensor data and reference glucose data for Patients 

A2 (panel a), A3 (panel b) and E3 (panel c). 
 

V. CONCLUSION AND FUTURE WORK 
Multiple sensors can improve the accuracy and 

robustness of blood glucose estimation.  The algorithm 
presented here retrospectively processes the data. In 
addition to moving toward an online implementation, the 
current algorithm needs to be optimized to (1) identify 
situations when all sensors are performing well, or poorly, 
and (2) remove only portions of sensor data, Future work 
will focus on real-time processing of multiple sensors and 
the collection of more patient data sets to validate the 
algorithm performance.  

 
 

TABLE V 
PROCESSED RESULTS 

ID Sensor 1 2 3 4 5 6 

B2 p1 1 0 0 0 0 0 
p2 33 5 10 5 5 5 

B3 p1 0 0 1 0 1 0 
p2 0 0 17 0 10 0 

C2 p1 1 0 0 0 0 0 
p2 0 8 11 0 0 10 

C3 p1 0 1 0 0 1 0 
p2 0 15 13 0 21 0 

D2 p1 0 1 0 0 0 0 
p2 14 27 35 19 10 5 

D3 p1 0 1 1 1 0 0 
p2 38 15 19 5 7 18 

F3 p1 1 1 0 0 0 0 
p2 5 29 6 10 6 23 

 
TABLE VI 

MARD FOR PATIENT 
ID All-Sensors 

Average 
 

Best Sensor 
Algorithm 
Composite 

B2 0.1024 0.1010 0.0884 
B3 0.0711 0.0680 0.0646 
C2 0.1312 0.0970 0.0847 
C3 0.1080 0.0947 0.0960 
D2 0.1449 0.1276 0.1274 
D3 0.1371 0.1369 0.1165 
F3 0.1278 0.0680 0.0646 
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