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Abstract— A pressure sensor array placed below a mattress
can be used to estimate the breathing effort signal unobtrusively.
When multiple breathing effort sensor outputs are available,
there is sometimes a need to choose the sensor with the best ap-
proximation of the actual breathing effort. Previous work with
pressure sensor arrays placed on top of or under mattresses
used for respiration rate and breathing signal estimation have
used either the amplitude or the power spectrum to choose
the most representative sensor. These methods are both useful
when the subject is still; however, pressure sensor signals also
contain movement. We propose and test a spectral ratio method
for selection in the presence of movement. The spectral ratio
method is good at finding strong breathing signals and at
discriminating movement signals from strong breathing signals.
This method provides a mean correlation to respiration bands
that is 4% higher than the next best method during small
movements and 14% higher during larger movements.

I. INTRODUCTION

A
S infrastructure that allows for long term home mon-

itoring of ageing adults becomes feasible and sensors

become smaller and less expensive, the field of unobtrusive,

non-contact monitoring of breathing signals has expanded.

With such monitoring, detection of apneas could signal sleep

disordered breathing; disturbed breathing patterns, such as

Cheyne-Stokes breathing, could be identified; and respiratory

rates could be measured to ensure that they are within an

expected range. A long lack of breathing effort could be

used to detect respiratory emergencies.

A number of sensor technologies have been exploited

for non-contact monitoring of breathing effort signals from

chest and abdominal motion, including pressure sensors [1],

ultrasonic sensors [2], radio wave transducers [3], [4], and

hydraulic sensors [5]. Multiple sensors, of the same or

different type, may be used to increase signal reliability

[1]. For instance, a pressure sensor array can provide a

distribution of sensors across a mattress, allowing multiple

sensors to pick up the bed occupant’s breathing effort.

When multiple sensors carry breathing information, there

is often a need to select the sensor whose output is most

representative of the breathing effort signal. Perhaps a single

sensor’s output is desired in order to estimate the respiratory
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Fig. 1. Selection of representative sensor from a sensor array

rate [6], [7], or perhaps the sensor selection is required as

part of a larger algorithm [8].

A general selection system is shown in Fig. 1. A selector

block chooses the best sensor based on a fitness score,

usually by approximating the strength of the breathing effort

signal at each sensor. A signal with a high amplitude or

strong power is expected to have less interference from noise

and other interfering signals.

Although the problem of sensor selection from pressure

sensor arrays has not yet been examined in isolation, re-

searchers have used sensor selection as part of wider projects.

Townsend et al. selected a reference sensor by locating

peaks and troughs to determine breathing amplitude [8]. This

method requires only simple calculations, but is prone to

errors due to small signal fluctuations. A more sophisticated

method used by Niizeki et al. [6] and Nishida et al. [7]

computed the power spectral density (PSD), and selected

the sensor output with the highest power over the respiratory

frequency range.

However, when bodily movements occur, such as during

position changes, limb movements, or twitches, movement

artifacts are introduced and interfere with the breathing

signal. Part of the breathing spectrum will be affected by

the movement and the sensors which are eventually selected

may be the ones most affected by movement.

We consider the use of pressure sensor arrays for respira-

tory monitoring and the selection of the most representative

sensor, paying particular attention to the fact that movement

corrupts the breathing output. Through judicious sensor se-

lection, we anticipate that movements can be better tolerated.

This paper aims to make use of further information in the

power spectrum to create a ratio-based fitness calculator that

discerns the signal from interference. The proposed method

is tested with data from participants, taking into account

movement that is identifiable by a movement detection

algorithm [9] and movement that is left undetected.
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(a) Original signal
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(b) Amplitude method
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Fig. 2. Selection methods

II. METHOD

After being sampled at 10 Hz, the outputs of all of the sen-

sors are segmented into epochs of 30 seconds, overlapping

by 15 seconds. The 50% overlap ensures that any interesting

change occurring right at an epoch border is captured by

the next epoch. The mean over each epoch is subtracted

to remove the average loading on the sensor. The resultant

signals are then fed to the fitness calculator and the sensor

with the highest fitness is selected for each epoch.

Fig. 2 displays each of the methods of fitness calculation

examined in this paper. Fig. 2a shows a typical breathing

signal. In Fig. 2b, the amplitude method is performed on a

low-pass filtered breathing signal. It detected some erroneous

peaks and troughs, which led to a smaller average amplitude

than was warranted. Fig. 2c shows the power spectrum of

the breathing signal and highlights the respiratory frequency

band that is accumulated for the spectral power (PSD)

method.

A. Spectral Ratio Method

The proposed spectral ratio method (Fig. 2d) takes ad-

vantage of the periodicity of the breathing signal to discern

the breathing signal from movement. First, we calculate the

PSD for the epoch data from each sensor using a windowed

periodogram. We then examine the power densities over the

frequency range of respiration, defined here from 0.07 Hz

to 0.8 Hz to correspond to respiratory rates from 4 to 48

breaths per minute (bpm). As in the spectral power method,

the total power in the band is accumulated to form the total

spectral power Ptot.

An estimate of the breathing rate is obtained by finding

the lobe with the highest peak in the frequency range of

interest. Excluding this main lobe and its harmonics, the PSD

at all other in-band frequencies is considered to be noise

or interference. Noise spectral density, N0, is estimated as

the median value of this noise. Total noise power, N , is

computed from this constant N0

N =

∫ f2

f1

N0 = N0(f2 − f1) = N0B (1)

where B is the bandwidth from f1 to f2. Here, f1 = 0.07 Hz,

f2 = 0.8 Hz, and B = 0.8−0.07 = 0.73 Hz. An estimate of

the breathing power Pb is obtained by subtracting N0 from

PSD and accumulating over the main lobe. The main lobe of

the breathing signal is highlighted in Fig. 2d. The bins for

noise estimation are indicated and the resultant N0 is shown.

The spectral ratio fitness F is then calculated as

F =
Pb

N
Ptot. (2)

The Pb

N
component allows strongly rhythmic signals to stand

out compared to signals with movement. When the actual

breathing is not rhythmic, the Ptot component allows the

method to fall back to the spectral power method.

III. EXPERIMENT

Three adult participants wore chest and abdominal respi-

ratory inductance plethysmography bands (respibands) while

lying on a hospital mattress, beneath which lay a pressure

sensor array with 48 sensors. The respibands were used as

a gold standard reference for breathing effort, to compare

against the sensor outputs from the pressure sensor array.

The participants each performed a protocol of breathing

and movement and lay on the mattress for a total of two

hours. Movements, including moving the head, moving an

arm, moving a leg, changing position, and twitching, were

requested of the participants every few minutes.

The pressure sensor array was formed by two Bed Occu-

pancy Sensor (BOS) mats from S4 Sensors, each containing
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TABLE I

SUMMARY OF RESULTS

Percent Mean Median

Correct Correlation Correlation

(%) Coefficient Coefficient

Amplitude 11.92 0.77 0.87

PSD 25.45 0.81 0.92

Spec. Ratio 28.85 0.82 0.92

24 pressure sensors. The outputs from the two mats were

logged at 10 Hz to a nearby laptop. The two respiband

outputs were also connected to the laptop and their data

logged at 20 Hz, and downsampled to 10 Hz after alignment

with the pressure sensors.

The respibands were found to be sensitive to movement

during position changes, which occasionally produced sig-

nals unmodulated by breathing during a number of the

epochs. These epochs were manually marked as invalid to

prevent corrupted comparisons.

An ideal sensor choice was calculated for every valid

epoch by comparing each sensor output to the respiband out-

put. Periods of movement, flagged from manual annotations,

were eliminated for this process. Comparisons of sensor

outputs to respiband outputs were made using Pearson’s

correlation coefficient. This coefficient produces a value

between -1 and 1, where -1 denotes perfect linear correlation

with a negative slope, 0 denotes no correlation, and 1 denotes

perfect positive linear correlation. The sensor whose absolute

value of correlation was the highest, closest to perfect linear

correlation, was marked as the ideal choice.

In practice, a priori knowledge of respiband outputs and

movement periods is not possible, and sensors must be

chosen based on the merit of their outputs alone. The epoch

data were fed to each method and the choice of sensor was

compared to the ideal sensor choice. Although the percentage

of correct sensor choices indicates broadly how well the

method works, when multiple sensor outputs are strongly

correlated to the respibands, a choice other than the ideal

sensor may still be effective. This was verified by calculating

the correlation coefficients between the respiband outputs

and the outputs of the sensors selected by each algorithm.

IV. RESULTS

A total of 1560 epochs were processed. Of these, 172 (over

10%) were declared invalid due to corruption in respiband

output. Such a high number may not occur in regular sleep,

but the participants in this study changed position every

twenty minutes. A further 334 of the remaining 1388 epochs

(24%) contained some type of movement that did not affect

the respiration bands, but could affect the pressure sensor

array. Again, this may be higher than in regular use, since

participants were asked to move every two minutes.

Table I shows a summary of results. The percentage of

selections which matched the ideal sensor is shown in the

TABLE II

EFFECT OF SELECTION ON RESPIRATORY RATE ERRORS

Percent Mean Mean

within Rate Rate

1 bpm (%) Error Bias

Amplitude 85.01 2.23 1.12

PSD 89.63 1.91 0.82

Spec. Ratio 90.78 1.75 0.59

first column. The spectral ratio method was almost three

times more likely to choose the ideal sensors than the ampli-

tude method. Although correct selections arose in less than

30% of epochs for all methods, the correlation coefficients

show good matching between the selected sensor outputs and

the respibands nonetheless. All methods but the amplitude

method provide mean correlation coefficients above 0.8, with

median values above 0.9.

Table II underlines the clinical effect of improvements in

sensor selection offered by the spectral ratio method. Com-

parisons were made between the respiratory rates calculated

from the respiband outputs to the respiratory rates calculated

from the sensor outputs chosen by each method. All methods

have median absolute rate errors of 0 bpm, so that over 50%

of the rates exactly match the rates that were measured from

the respibands; however, the spectral ratio method resulted in

smaller mean rate errors. The improvement in the percentage

of epochs with rate errors less than 1 bpm is almost 1%

over the spectral power method and more than 5% over the

amplitude method. The mean rate errors were all less than 2.5

bpm and all methods had a slight positive bias: the sensors

were more likely to overestimate the respiration rate.

To examine the effect of movement, a ratio of the move-

ment energy present in each epoch to the total energy was

calculated, using manual movement annotations to deter-

mine when movement occurred. The movement energy ratio,

MER, combines movement length and power into a single

number to quantify the amount of movement present in each

epoch:

MER =
Em

Etot

=
P (Xm)M

P (Xall)N
(3)

where M is the number of samples of movement in the

epoch of length N, Xm represents the samples that occurred

during the movement period, Xall represents all of the

samples in the epoch, and P (X) is power, calculated as

the variance of X . Epochs were classified according to

amount of movement: none (MER = 0), small (MER < 0.25),

medium (0.25 ≤ MER < 0.75), and large (MER ≥ 0.75).

Fig. 3 shows the difference in performance for each of

the methods with respect to amount of movement. When no

movement occurs, the spectral ratio method barely exceeds

the spectral power method. Once even a small amount of

movement occurs, the spectral ratio method widens the

performance gap with a correlation 4.1% higher than the

spectral power method. For large amounts of movement the
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Fig. 3. Correlation of respibands to selected sensor, with respect to
the movement energy ratio of each epoch. The bars behind represent the
maximum possible correlation if all epochs were ideally chosen with a priori
knowledge of the respiband output and where movement artifact occurred
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Fig. 4. Histogram of movement energy ratios for detected and undetected
movement

gap becomes 14%. However, movement is detrimental to all

methods, and the difference between these methods and the

ideal sensor selection also widens with higher movement

ratios.

By using a movement detection algorithm prior to sensor

selection, the effect of movement can be moderated [9].

However, not all movement artifacts are detected by this

algorithm. To better understand the distribution of movement

energy in the data set and how much of the movement energy

can be negated by movement detection, Fig. 4 displays the

distribution of the movement ratio over the epochs that

included movement. Additionally, each histogram bar is

broken into the ratio of epochs where movement was detected

versus undetected. The majority of epochs with movement

contained only small movements. For these epochs, the

proportion of epochs where movement was detected was

only 45%, while for medium and large movements, the

proportion of detections were 81% and 96% respectively.

As the movement energy ratio increases, and movements

become stronger, the proportion of movements that are easily

detected increases.

The ability of a selection method to withstand weaker

or shorter movements is more critical than for larger ones.

Most importantly, smaller movements are less likely to be

detected, and breathing effort signals may be unknowingly

corrupted. Secondly, smaller movements are more likely to

occur. Almost 40% of the movements performed here were

classified as small movements, and in clinical practice, where

movements like leg twitches occur during sleep, tolerance to

such movements is key.

V. CONCLUSION

We set out to reduce the error in sensor selection when

movement artifacts intruded on pressure sensor signals. By

taking advantage of the periodicity of the breathing signal

to find the sensor output that is at the same time strongly

rhythmic and powerful, the proposed spectral ratio method

offered better performance than the next best method, the

spectral power method, during both still and movement-

corrupted epochs. For epochs containing small movements,

which are the least likely to be detected, this method shows a

convincing advantage, with a 4% improvement in correlation

to respiband outputs.

Across all methods, the drop in performance due to

movement was substantial when compared to the best pos-

sible outcome. Further investigation is warranted to increase

movement corruption resilience.

Although the methods outlined here were tested with

pressure sensors, they may be applicable to any respiratory

sensor technology that is beset by movement artifacts.
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