
  

  

Abstract—Patients with diabetes have difficulty controlling 
their blood sugar and suffer from acute effects of hypoglycemia 
and long-term effects of hyperglycemia, which include disease 
of the eyes, kidneys and nerves/feet.  In this paper, we describe 
a new system that is used to automatically control blood sugar 
in people with diabetes through the fully automated 
measurement of blood glucose levels and the delivery of insulin 
and glucagon via the subcutaneous route.  When a patient’s 
blood sugar goes too high, insulin is given to the patient to 
bring his/her blood sugar back to a normal level.  To prevent a 
patient’s blood sugar from going too low, the patient is given a 
hormone called glucagon which raises the patient’s blood 
sugar.  While other groups have described methods for 
automatically delivering insulin and glucagon, many of these 
systems still require human interaction to enter the venous 
blood sugar levels into the control system.  This paper describes 
the development of a fully automated closed-loop dual sensor 
bi-hormonal artificial pancreas system that does not require 
human interaction.  The system described in this paper is 
comprised of two sensors for measuring glucose, two pumps for 
independent delivery of insulin and glucagon, and a laptop 
computer running a custom software application that controls 
the sensor acquisition and insulin and glucagon delivery based 
on the glucose values recorded. Two control algorithms are 
designed into the software: (1) an algorithm that delivers 
insulin and glucagon according to their proportional and 
derivative errors and proportional and derivative gains and (2) 
an adaptive algorithm that adjusts the gain factors based on the 
patient’s current insulin sensitivity as determined using a 
mathematical model.  Results from this work may ultimately 
lead to development of a portable, easy to use, artificial 
pancreas device that can enable far better glycemic control in 
patients with diabetes. 

I. INTRODUCTION 

ATIENTS suffering from diabetes cannot maintain their 
blood sugar at a constant normal level.  The blood sugar 

of a patient with type 1 diabetes can go too low - a condition 
called hypoglycemia.  Hypoglycemia, if left untreated can 
lead to feelings of discomfort, seizures, and in rare cases 
brain damage or death.  Patients with type 1 and type 2 
diabetes can also suffer from excessively high blood sugar – 
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a condition called hyperglycemia.  Exposure to 
hyperglycemia over many years can cause neuropathy, 
retinopathy, and damage to other tissue and organs.  Current 
methods of maintaining euglycemia in patients with diabetes 
involves periodic monitoring of blood sugar using off-the-
shelf blood glucose monitoring sensors and then subsequent 
delivery of insulin via either multiple needle injections 
throughout the day or alternatively through the use of an 
insulin pump.  Insulin injections enable the patient to reduce 
his/her blood sugar levels when they are too high.  If a 
patient finds that their blood sugar levels are too low, they 
typically eat carbohydrates to bring their levels back up 
again.  While regular monitoring and subsequent infusion of 
insulin into the body has proven to be effective at improving 
patients’ ability to control their blood sugar [1], maintenance 
of a stable blood sugar requires constant monitoring of a 
variety of factors including current blood sugar, meal times, 
amount of carbohydrate consumed, amount of physical 
activity and an individual’s own variable sensitivity to 
insulin. It is difficult and time consuming for a patient with 
diabetes to continuously monitor their blood sugar and 
accurately determine the amount of insulin that they need to 
dose themselves.  Furthermore, episodes of hypoglycemia 
can occur without the patient realizing it, such as at 
nighttime while the patient is asleep.  Other groups have 
described a manually-controlled artificial pancreas system 
used to maintain constant blood sugar levels in patients with 
diabetes [2; 3; 4]; in these systems blood sugar levels were 
entered by hand into the control system and the control 
system then determined the amount of insulin and glucagon 
to dose to the patient.  In this paper, we describe a fully 
automated artificial pancreas whereby continuous 
acquisition of multiple sensor values and delivery of insulin 
and glucagon are done without human interaction.   
 The concept of a closed-loop artificial pancreas was first 
described by Kadish in 1964 [5].  Since then there have been 
other groups that have made significant contributions to 
artificial pancreas technology [6; 7; 8].  Several groups have 
discussed various methods for implementing a closed-loop 
artificial pancreas using model predictive control systems [9; 
10; 11; 12; 13] and others using neural network-based 
control methods [14; 15].  Albisser et al. [16; 17] described 
how proportional and derivative parameters could be used to 
control insulin and glucagon based on sensed glucose.  Ward 
et al. also have described the use of proportional and 
derivative parameters to develop a novel method of insulin 
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delivery using an algorithm called the fading memory 
proportional-derivative method or FMPD [18] which was 
designed to deliver insulin based on the normal physiology 
of the β-cells.  The current paper discusses implementation 
of the FMPD algorithm to control both insulin and glucagon 
based on sensed glucose readings.  The FMPD algorithm is 
extended in this paper to include an adaptive control 
mechanism based on a modification of Hovorka’s model of 
glucose and insulin absorption [12] that accounts for a 
patient with diabetes ongoing change in insulin sensitivity.   

The system we describe includes a method for glucose 
sensor redundancy; the system includes two glucose sensors 
rather than one to reduce the error caused by sensor drift, 
latency effects, and calibration errors.  Advantages of a two-
sensor design have been previously reported [19].  

II. PROCEDURES 

The artificial pancreas system constructed is shown in 
Figure 1 below.  The system consists of a custom software 
application called Artificial Pancreas Control (APC) written 
in C# which wirelessly acquires subcutaneous interstitial 
glucose readings from two off-the-shelf glucose sensors 
(Dexcom Inc.), and controls two off-the-shelf pumps (Insulet 
Corporation).  One of the pumps is filled with insulin and 
the other is filled with glucagon.   

 
Figure 1:  System diagram of dual-sensor bi-hormonal artificial 
pancreas system. 

The APC software determines how much insulin and 
glucagon must be delivered to a patient based on the glucose 
sensor readings recorded as well as various events that are 
input into the software including meal events, oral / IV 
carbohydrate boluses, and sensor calibrations. 

Insulin infusion rates (IIR) and glucagon infusion rates 
(GIR) are determined using the FMPD control algorithm 
[16].  The FMPD algorithm is extended in this paper to 
include an adaptive component that adjusts a patients’ total 
daily insulin requirement (TDR) based on real-time 
simulations from a physiologic model of insulin and glucose 
metabolism described in Hovorka et al. [12]  This new 
algorithm is called Adaptive Proportional Derivative (APD). 
Figure 2 outlines the FMPD algorithm and the shaded block 
shows how the model is extended to incorporate APD. 

A. Fading Memory Proportional Derivative (FMPD)  
Steil et al. [20] describe how the pancreatic β-cell response 

to glucose is biphasic; specifically, there is an initial increase 
in insulin release by the cell followed by a slower release of 

insulin that persists during the course of the hyperglycemic 
event.  The FMPD algorithm models this biphasic quality by 
utilizing current information in addition to a fading history 
of previous information to estimate the amount of insulin 
and glucagon that should be dosed.  The β-cell is responsible 
for maintaining blood glucose at a set target level (GT).  If 
blood sugar (G) at time t deviates from this target level, 
there is a proportional error called PE(t). 

 
Figure 2:  FMPD model for delivering insulin and glucagon based on 
periodic glucose sensor inputs and other event inputs including meal 
and oral carbohydrate consumption.  The adaptive component of the 
model (shaded box) adjusts the total daily insulin requirement (TDR) 
based on the patient’s estimated insulin sensitivity. 

The amount of insulin delivered is dependent on this 
proportional error.  Proportional error is the difference 
between the patient’s sensed glucose and the target glucose.  
If the sensed glucose is larger than the target glucose level, 
then the insulin infusion rate increases.  The model of the 
biphasic nature of the proportional error is implemented by 
maintaining a 90 minute history of the proportional error and 
performing a weighted average using an exponential 
multiplier.  This weighted average term is called the 
proportional error average and is defined in Equation 1.  The 
terms K and z terms are the proportional gain coefficient and 
decay coefficient, respectively [18].  

Equation 1    ࢍ࢜࡭ࡱࡼ
ࡾࡵࡵ ൌ ࡱࡼࡷ

ࡾࡵࡵ ቆ∑ ૚ૡ࢚࢘࢏࢏ࢋ࢖ࢆషࢋሺ࢚ሻࡱࡼ
࢚స૙

૚ૢ
ቇ 

The amount of insulin delivered is also dependent on how 
quickly the patient’s glucose level is changing.  If the 
patient’s glucose is increasing rapidly, then the insulin 
infusion rate also increases.  Likewise if the patient’s 
glucose is decreasing rapidly, the insulin infusion rate 
decreases further.  The rate at which the glucose is changing 
is called the derivative error (DE) and is calculated using a 
least squares regression over the prior 10 minutes of sensor 
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data.  As with the proportional error, the biphasic nature of 
the β-cell is incorporated into DE by accumulating 90 
minutes of data and applying a weighted average such that 
the more recent DE values affect the infusion rate more 
significantly.  The equation for DEAvg is defined below. 

Equation 2  ࢍ࢜࡭ࡱࡰ
ࡾࡵࡵ ൌ ࡱࡰࡷ

ࡾࡵࡵ ቆ∑ ૟૙ࡱࡰሺ࢚ሻࢋషࡱࡰࢆ
࢘࢏࢏ ࢚૚ૡ

࢚స૙
૚ૢ

ቇ 

Finally, the amount of insulin delivered is dependent upon 
the patient’s adjusted total daily insulin requirement 
(TDRAdj), which is their physician-prescribed TDR adjusted 
by their HbA1C as defined below. 
 
Equation 3 ࢐ࢊ࡭ࡾࡰࢀ ൌ .ሺ૙ࡾࡰࢀ ૙૟૟ૠ࡭࢈ࡴ૚࡯ ൅ ૙. ૞૜૜૚ሻ 

Lastly, the total insulin infusion rate includes a basal 
insulin infusion component. The basal rate is defined as 
being a constant value when the patient’s glucose is greater 
than or equal to the target glucose.  If the blood glucose is 
less than 60% of the target glucose, then the basal insulin 
rate is turned off.  If glucose is less than the target, but 
greater than 60% of the target, then the basal rate decreases 
linearly according to Equation 4.   

 
Equation 4 

ሺ࢚ሻࡾ࡮  ൌ

ە
ۖ
۔

ۖ
ۓ ࡮ࡷ࢐ࢊ࡭ࡾࡰࢀ

૛૝
, ࢀࡳ ൑ ሺ࢚ሻࡳ

ቀ࡮ࡷ࢐ࢊ࡭ࡾࡰࢀ

૛૝
ቁ ቂቀ૛.૞ࡳכሺ࢚ሻ

ࢀࡳ
ቁ െ ૚. ૞ቃ , ࢀࡳ0.6 ൑ ሺ࢚ሻࡳ ൏ ࢀࡳ

૙, ሺ࢚ሻܩ ൏ ࢀࡳ0.6

 

The total insulin infusion rate is a sum of PEAvg, DEAvg, and 
BR shown in Equation 5. 
 
Equation 5   ࡾࡵࡵ ൌ ࢍ࢜࡭ࡱࡼ

ࡾࡵࡵ ൅ ࢍ࢜࡭ࡱࡰ
ࡾࡵࡵ ൅   ࡾ࡮

Delivery of glucagon is also dependent on the proportional 
error and the derivative error.  There are several important 
differences between how glucagon infusion rate (GIR) is 
calculated in comparison with IIR by the FMPD algorithm.  
First, FMPD allows for a different target glucose level for 
glucagon than for insulin.  This enables the glucagon 
infusion to be independent of the insulin infusion.  Second, 
the glucagon proportional error is only dependent on the 4 
most recent glucose readings (15 minutes) and the derivative 
error average is only dependent on the 3 most recent derivate 
error calculations (10 minutes).  This is because the effect of 
glucagon on the body is more rapid than insulin, so only the 
most recent glucose history is pertinent. Third, no basal 
component exists for the glucagon infusion rate. Finally, the 
average PE and DE for glucagon is adjusted by the patient’s 
weight (W).  GIR is summarized below. 

Equation 6  ࢍ࢜࡭ࡱࡼ
ࡾࡵࡳ ൌ ࡱࡼࡷ

ࡾࡵࡳ ቆ∑ ࡱࡼࢆషࢋሻࡾࡵࡳࡱࡼሺࢃ
૜࢚ࡾࡵࡳ

࢚స૙
૝

ቇ 

Equation 7  ࢍ࢜࡭ࡱࡰ
ࡾࡵࡳ ൌ ࡱࡰࡷ

ࡾࡵࡳ ቆ∑ ࡱࡰࢆషࢋሻࡱࡰሺࢃ
࢘࢏࢏ ࢚૛

࢚స૙
૜

ቇ 

Equation 8       ࡾࡵࡳ ൌ ࢍ࢜࡭ࡱࡼ
ࡾࡵࡳ ൅ ࢍ࢜࡭ࡱࡰ

ࡾࡵࡳ  

B. Physiologic model for changing insulin sensitivity 
The FMPD control algorithm described above can be 
extended to adjust for each patient’s changing insulin 
sensitivity.  Insulin sensitivity can vary based on factors 
including fatigue, stress, exercise, and other events.  The 
new algorithm is called the Adaptive Proportional Derivative 
algorithm (APD), and it is briefly described here; a future 
paper will describe it in more detail. 
 The extension of FMPD to include adaptive control over 
the insulin sensitivity is shown as the shaded box in Figure 
2.  The total daily insulin requirement (TDR) as used in the 
FMPD algorithm does not need to be a fixed input 
parameter, but rather can change dynamically.  TDR is a 
function of insulin sensitivity, and it directly influences the 
calculation of the basal insulin rate (Equation 3 and 4).  
Therefore, we can capture dynamic changes to a patient’s 
insulin sensitivity by adjusting TDR.   

Within the APD algorithm, the initial TDR is estimated 
using the patient’s first glucose reading and the patient’s 
basal insulin rate at the start of the experiment.  The 
Hovorka insulin sensitivity model is used to estimate 
glucose using each of the possible sensitivity composites 
ranging from 10% to 200% of baseline sensitivity factors.  A 
least squares regression is done to determine which 
sensitivity yields a glucose estimate closest to the patient’s 
current glucose reading.  After the initialization, TDR is 
updated once every 30 minutes.  The updated TDR is 
calculated using the previous 90 minutes of sensor readings, 
insulin boluses, and meal events.  Insulin sensitivity 
composites of between 10% and 200% are input into the 
insulin sensitivity model and used to predict glucose levels.  
A least squares regression is again performed to determine 
which sensitivity component yields the predicted glucose 
pattern that is closest to the actual glucose pattern during 
that time.  The sensitivity is then converted to TDR, which is 
input into the FMPD algorithm. 

We have done testing adjusting insulin sensitivity in 
patients with type 1 diabetes through the administration of 
steroids to verify that the model of insulin sensitivity is valid 
and detects the fall in sensitivity.  Results are beyond the 
scope of this paper; a future publication will discuss further. 

III. RESULTS 

Preliminary results shown in Figure 3 demonstrate how 
the adaptive control algorithm performs in an actual patient 
with diabetes.  Results show that the system delivers insulin 
when the patient’s glucose is high and delivers glucagon 
when the patient’s glucose drops rapidly.  The system also 
responds to meal events, adjusting the amount of insulin and 
glucagon based on the meal consumed and the amount of 
carbohydrate within the meal.  

Notice in Figure 3 that the patient’s blood glucose is 
initially high.  After breakfast, their blood sugar rises even 
higher.  Insulin is automatically delivered to the patient’s 
body and the patient’s blood glucose is brought down to a 
euglycemic level.  As the patient’s blood glucose continues 
to drop below the target blood sugar level, glucagon is 
delivered to increase the blood sugar.  The patient’s blood 
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sugar is eventually brought into a range that is clinically 
acceptable. 

 
Figure 3:  Diabetic patient’s blood glucose during automated delivery 
of insulin and glucagon using the APD control algorithm. 

IV. DISCUSSION 

We have described a fully automated artificial pancreas 
control system that acquires glucose from two sensors while 
delivering insulin and glucagon to a patient’s body without 
human interaction.  The advantages of bi-hormonal delivery 
are evident in Figure 3 which shows how a hypoglycemic 
episode is avoided through the delivery of glucagon at 
minute 280 as the patient’s blood sugar is falling rapidly.  
Likewise, hyperglycemic events are minimized by the 
delivery of insulin at the beginning of the experiment and 
also at other times when the patient’s blood sugar begins to 
rise above euglycemia such as minute 200 and minute 350.  
Sensor drift issues are minimized through the use of two 
sensors within the system to estimate the patient’s blood 
sugar.  The most accurate sensor at the time of calibration is 
used within the control algorithm and a sensor which has 
drifted will not be used.  In this experiment, sensor 1 was 
selected as the most accurate and sensor 2 readings were 
discarded.  Future plans include using the system within a 
clinical study of human subjects with diabetes in inpatient 
and then outpatient environments.  Other plans involve 
miniaturizing the system so that it can be easily carried and 
used within a patient’s home. 

V.  ACKNOWLEDGEMENTS 

The authors would like to thank Steven Gemmell, Insulet 
Corporation, and Dexcom Inc. for their generous support. 

VI. REFERENCES 

[1] Group, Diabetes Control and Complications Research, “The effect of 
intensive treatment of diabetes on the development and progression of 
long-term complications in insulin-dependent diabetes mellitus,”New 
England Journal of Medicine, vol. 329, pp. 977-986, 1993. 

[2] J.R. Castle, J.M. Engle, J. El Youssef, R.G. Massoud, K.C. Yuen, R. 
Kagan, W.K. Ward, “ Novel use of glucagon in a closed loop system 
for prevention of hypoglycemia in type 1 diabetes,”Diabetes Care, 
vol. 33, no. 6, pp. 1282-1287, March 2010. 

[3] F.H. El-Khatib, S.J. Russell, D.M. Nathan, R.G. Sutherlin, E.R. 
Damiano, “A bihormonal closed-loop artificial pancreas for type 1 
diabetes”, Sci Transl Med., vol. 2, no. 27, April 2010. 

[4] F.H. El-Khatib, J. Jiang, E.R. Damiano, “Adaptive closed-loop control 
provides blood-glucose regulation using dual subcutaneous insulin 
and glucagon infusion in diabetic Swine”, J. Diabetes Sci. Technol, 
vol. 1, no. 2, pp. 181-92.  

[5] A.H. Kadish, “Automation control of blood sugar. I. A 
servomechanism for glucose monitoring and control”, Am. J. Med. 
Electron, vol. 3, pp. 82-86, April 1964. 

[6] A.M. Albisser, B.S. Leibel, T.G. Ewart, Z. Davidovac, C.K. Botz, W. 
Zingg, “An artificial endocrine pancreas”, Diabetes, vol. 23, no. 5, pp. 
389-396, May 1974. 

[7] E.F. Pfeiffer, C. Thum, A.H. Clemens, “The artificial beta cell - a 
continuous control of blood sugar by external regulation of insulin 
infusion (glucose controlled insulin infusion system),” Horm.Metab. 
Res., vol. 6, no. 5, pp. 339-342, September 1974.  

[8] A.H. Clemens, P.H. Chang, R.W. Myers, “The development of 
Biostator, a glucose controlled insulin infusion system (GCIIS),” 
Horm.Metab. Res., vol. 7, pp. 23-33, 1977. 

[9] R.S. Parker, F.J. Doyle, “A model-based algorithm for blood glucose 
control in type I diabetic patients,” IEEE Transactions in Biomedical 
Engineering, vol. 46, no. 2, pp. 148-157, 1999. 

[10] G. Pacini, R.N. Bergman, “PACBERG. an adaptive program for 
controlling the blood sugar,”Comput. Programs Biomed., vol. 16, no. 
1-2, pp. 13-20, 1983. 

[11] S. Kan, H. Onodera, E. Furutani, T. Aung, M. Araki, H. Nishimura, S. 
Maetani, M. Imamura, “Novel control system for blood glucose using 
a model predictive method,” ASAIO, vol. 46, no. 6, pp. 657-662, 2000. 

[12] R. Hovorka, V. Canonico, L.J. Chassin, U. Haueter, M. Massi-
Benedetti, M. OrsiniFederici, T.R. Pieber, H.C. Schaller, L. Schaupp, 
T. Vering, M.E. Wilinksa. “Nonlinear model predictive control of 
glucose concentration in subjects with type 1 diabetes,”Physiol. 
Meas.,vol. 25, no. 4, pp. 905-920, August 2004. 

[13] R. Hovorka, L.J. Chassin, M.E. Wilinska, V. Canonico, J.A. Akwi, 
M.O. Federoco et al., “Closing the loop: the adicol experience,” 
Diabetes Technol. Ther., vol. 6, no. 3, pp. 307-318, June 2004. 

[14] G. Gogou, N. Maglaveras, B.V. Ambrosiadou, D. Goulis, C. Pappas, 
“A neural network approach in diabetes management by insulin 
administration,” J Med Syst., vol. 25, no. 2, pp. 119-131, April 2001. 

[15] D. Dazzi, F. Taddei, A. Gavarini, E. Uggeri, R. Negro, A. Pezzarossa. 
The control of blood glucose in the critical diabetic patient: a neuro-
fuzzy method,” J. Diabetes Complications, vol. 15, no. 2, pp. 80-87, 
March 2001. 

[16] A. M. Albisser, “Intelligent instrumentation in diabetic management,” 
Crit. Rev. Biomed. Eng., vol. 17, no. 1, pp. 1-24, 1989. 

[17] E. B. Marliss, F.T. Murray, E.F. Stokes, B. Zinman, A.F. Nakhooda, 
A. Denoga, B.S. Leibel, A.M. Albisser, “Normalization of glycemia in 
diabetics during meals with insulin and glucagon delivery by the 
artificial pancreas,” Diabetes, vol. 26, no. pp. 663-672, July 1977. 

[18] B. Gopakumaran, H.M. Duman, D.P. Overholser, I.F. Federiuk, M.J. 
Quinn, M.D. Wood, W.K. Ward, “A novel insulin delivery algorithm 
in rats with type 1 diabetes: the fading memory proportional-
derivative method,” Artificial Organs, vol. 29, no. 8, pp. 599-607, 
August 2005. 

[19] J.R. Castle, W.K. Ward, “Amperometric glucose sensors: sources of 
error and potential benefit of redundancy”,J. Diabetes Sci Technol., 
vol. 4, pp. 221-225, January 2010. 

[20] G. M. Steil, R. Janowski, C. Darwin, M.F. Saad, “Modeling beta-cell 
insulin secretion - implications for closed-loop glucose homeostasis,” 
Diabetes Technol. Ther., vol. 5, no. 6, pp. 953-964, 2003. 

0 100 200 300 400 500 600
0

200

400
Blood glucose

Time [minutes]

Bl
oo

d 
gl

uc
os

e 
[m

g/
dL

]

0 100 200 300 400 500 600
0

5

10
Insulin infusion

Time [minutes]

In
fu

sio
n 

ra
te

 
[u

ni
ts/

hr
]

0 100 200 300 400 500 600
0

2

4 Glucagon infusion

Time [minutes]

In
fu

sio
n 

ra
te

 
[m

L/
m

in
ut

e]

*   breakfast
+   lunch

+
*

400


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

