

Abstract—Numerical simulation with a numerical human

model using the finite-difference time domain (FDTD) method

has recently been performed in a number of fields in biomedical

engineering. To improve the method’s calculation speed and

realize large-scale computing with the numerical human model,

we adapt three-dimensional FDTD code to a multi-GPU

environment using Compute Unified Device Architecture

(CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU

boards. The performance of multi-GPU is evaluated in

comparison with that of a single GPU and vector

supercomputer. The calculation speed with four GPUs was

approximately 3.5 times faster than with a single GPU, and was

slightly (approx. 1.3 times) slower than with the supercomputer.

Calculation speed of the three-dimensional FDTD method using

GPUs can significantly improve with an expanding number of

GPUs.

I. INTRODUCTION

UMERICAL simulation with anatomically realistic

human models has recently been performed for studies

on medical applications and biological effects [1], [2]. The

finite-difference time-domain (FDTD) method, one of the

electromagnetic analysis methods, has mainly been used in

these studies using human models. High-performance

computer systems, such as supercomputers, were until a few

years ago generally needed to perform FDTD calculation

with human models, due to the problem of large memory and

heavy central processing unit (CPU) time. Recently,

general-purpose computing on a graphics processing unit

(GPGPU) has received considerable attention in many

scientific fields [3]-[5] because a GPGPU offers high

computational performance at low cost.

We previously implemented the three-dimensional

FDTD method on a GPU using Computer Unified Device

Architecture (CUDA) [6], and also found that

three-dimensional FDTD calculation using a single GPU can

significantly reduce run time compared to when using a

conventional CPU, even with a native GPU implementation

of the three-dimensional FDTD method [7]. However, the

available memory of a single GPU is limited.

In this paper, to realize large scale computing with a

human model, we adapt three-dimensional FDTD code to

multi-GPU environments using CUDA. FDTD calculation

using multi-GPU is also expected to greatly reduce run time

T. Nagaoka and S. Watanabe are with the Electromagnetic Compatibility

Laboratory, Applied Electromagnetic Research Institute, National Institute of

Information and Communications Technology, Tokyo 184-8795, Japan.

(e-mail: nagaoka@nict.go.jp; wata@nict.go.jp).

in comparison with that of a single GPU. The approach is

adapted to simulate an electromagnetic field using a human

model, and its performance is evaluated.

II. MULTI-GPU IMPLEMENTATION OF FDTD METHOD

A. CUDA and GPU parallel computation

CUDA framework provides GPU parallel computation

capability including a programming and execution

environment. CUDA also supports multiple GPU subsystems

(multi-GPU) in a single system. Figure 1 shows a high-level

view of the multi-GPU system and CUDA framework.

Fig. 1. CUDA and GPU parallel computing

A program should be converted to CUDA code by a

CUDA compiler in order to be run on a GPU. CUDA code

consists of device code and host code. The device code runs

on the GPU while the host code runs on a CPU. The device

code written as a kernel program executes a fragment of

computation code, such as for-loop body code, that can be

computed in parallel. CUDA generates thousands of GPU

threads that simultaneously execute device code on stream

processors. The host code allocates and frees GPU memory,

transfer data between CPU and GPU, and controls execution

of the device code.

A GPU has hundreds of processors, called stream

processors (SPs). It is capable of executing thousands of GPU

threads that CUDA generates, which are bundled into a

thread block. Thread blocks are arranged into a grid [8].

CUDA maps parallelizable code fragment to these GPU

threads.

CUDA supports multi-GPU by controlling multiple

GPUs with a single program. Each GPU requires dedicated

CPU threads and a multi-GPU system should be equipped

with the same number of GPUs and CPUs. GPU memory is

dedicated to a single GPU and cannot be addressed from

either a CPU or another GPU. In this sense, multi-GPU can be

regarded as a distributed memory multiprocessor.

Multi-GPU Accelerated Three-Dimensional FDTD Method for

Electromagnetic Simulation

Tomoaki Nagaoka, Member, IEEE, and Soichi Watanabe, Member, IEEE

N

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 401

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

B. Three-dimensional FDTD computation on a single

GPU

FDTD is the most popular method of computational

electromagnetic simulation because of its simple algorithm

and very high computational efficiency using modern

computer equipment [9]. The method also has application

with an anatomically realistic human model with complex

shape and internal structure [2].

Figure 2 shows the total flow of the three-dimensional

FDTD method for a single GPU computation. There are four

tasks within each time step for the GPU side in this figure:

electric field computation (e_field), perfectly matched layers

(PML) computation for electric field (e_pml) as the absorbing

boundary condition [10], magnetic field computation

(h_field) and PML for magnetic field (h_pml). All field

updates in each time step can be parallelized and are

offloaded to the GPU.

Our original three-dimensional FDTD program is

written in C and converted to CUDA code to be executed on a

single GPU. The three-dimensional FDTD process starts with

initialization tasks such as memory allocation, parameters and

GPU setup. Initial values for GPU computation are then

transferred to GPU memory. Time step loop including e_field,

e_pml, h_field and h_pml follows. After the time ends, results

of GPU computation are transferred from GPU to Host (CPU).

Finally, SAR computation is done by Host. Our GPU

three-dimensional FDTD program requires no data transfer

for field updates because all computations within each time

step are purely executed by GPU.

Fig. 2. FDTD process flow for single GPU processing

Electric field and magnetic field are three-dimensional

vector fields. Six three-dimensional arrays are used for the

field component; EX, EY, EZ, HX, HY and HZ. All the field

computations, e_field, e_pml, h_field and h_pml, contain

three-dimensional parallelizable for-loop and are converted

to CUDA kernel codes. These kernel codes are called

sequentially for each time step.

A typical for-loop would be:

Since CUDA currently does not support a

three-dimensional grid, up to two-dimensional for-loop can

be parallelized in a straight way. We put a for-loop for the Z

direction in a kernel program.

C. Multi-GPU parallelism

For multi-GPU parallelism, it is necessary to partition

data arrays such as electric fields among multiple GPUs. We

divide three-dimensional arrays in the Z direction [11]. As

noted above, each GPU is capable of addressing only local

GPU memory and ghost nodes should be added to each

instance of decomposed data. FDTD schema is the first-order

partial differential equation, and it is necessary to add a single

slice of ghost nodes at the boundary of the decomposed data.

These ghost node values need to be updated for each time step

by communicating with the neighboring GPU [8], [11].

We describe ghost node updates with a two GPU

system, but extending to n-GPU is straight-forward. Let

GPU#0 holds E and H arrays from Z=1 to Z=100 and GPU#1

holds Z=101 to Z=200. EX[z][y][x] depends on HY[z][y][x]

and HY[z-1][y][x]. We note the dependency as:

EX[z][y][x] ← HY[z][y][x] , HY[z-1][y][x]

In this notation, HY depends on EX as:

HY[z][y][x] ← EX[z][y][x] , EX[z+1][y][x]

At the boundary of data for each GPU, z=100:

For GPU #0

EX[100][y][x] ← HY[100][y][x], HY[99][y][x]

HY[100][y][x] ← EX[100][y][x], EX[101][y][x]

For GPU #1

EX[101][y][x] ← HY[101][y][x], HY[100][y][x]

HY[101][y][x] ← EX[101][y][x], EX[102][y][x]

From these dependencies, it is necessary to add

EX[101][y][x] for all x and y to data of GPU#0 as ghost

nodes. At the same time, HY[100][y][x] for any x and y are

added to the data of GPU#1 as ghost nodes.

EX, HY and other variables are updated at each time

step, but ghost node values are only referenced and not

updated. Updated values are copied from the neighboring

GPU. For example HY[100][y][x] are updated on GPU#0,

and ghost nodes HY[100][y][x] on GPU#1 are updated by

copying the value on GPU#0.

Figure 3 shows ghost nodes and updates via GPU

communication. The left figure shows ghost nodes of EX

[101][y][x] for GPU#0 and the right figure HY[101][y][x] for

GPU#1. GPU#1 is responsible for updating EX[101][y][x].

After GPU#1 updates EX[101][y][x], the data value is

transferred to GPU#0. Ghost nodes of HY[101][y][x] are

managed in the same way as EX. Other variables such as EY,

EZ, HX and HZ are managed in the same way as EX and HY.

402

Fig. 3. Ghost nodes updates and GPU communication for each step

D. Implementation of the multi-GPU approach with Open

MP

Our target multi-GPU system is a single system with

multiple GPUs. GPU-GPU communication is achieved via

host memory on this system, which is a combination of

GPU-Host and Host-GPU data transfer. Each GPU requires

dedicated CPU threads. OpenMP is used to create CPU

threads and control their execution including thread

synchronization. Figure 4 shows a two-GPU case of

multi-GPUed FDTD time step. A single-GPU version of the

FDTD time step is replaced with that of the multi-GPU

version.

The first OpenMP task is to create a parallel region

with the number of GPUs threads. After electric field

computation (e_field, e_pml) is completed on two GPUs,

ghost nodes for the electric field are updated with GPU#1

values (right-left arrow). CPU threads are synchronized

before starting magnetic field computation (h_field, h_pml)

with OpenMP barrier synchronization at GPU-GPU

communication. After magnetic field computation is

completed, ghost nodes for the magnetic field are updated

with GPU#0 values (left-right arrow).

Fig. 4. Multi-GPU version of FDTD time step loop

III. PERFORMANCE TESTS

A. Computational environment

In this study, we used an NVIDIA Tesla C2070 as the

GPGPU board. It has 448 scalar processer (SP) cores and

6GB GDDR5 RAM. The core clock and memory bandwidth

of the board are also 1.15 GHz and 144 GB/sec, respectively.

We used a workstation equipped with Intel 4-Core Xeon

X5620 (2.4GB) as the CPU and 48 GB memory (6 × 8 GB

DDR3-1066 with ECC), and Ubuntu 10.04 64-bit Linux as

the operating system. The four GPU boards (Tesla C2070)

were mounted on a workstation. Therefore, GPU memory of

24 GB is available in the environment. We used the NVIDIA

Linux driver (190.18) for the GPU, and gcc 4.3.3 and CUDA

3.2 as the compilers of the CPU and GPU, respectively.

B. Performance of multi-GPU FDTD calculation

To examine the performance of the FDTD calculation

on multi-GPU, we conducted a test using the calculation

model shown in Fig. 5. The model was a cube domain, and its

center was allocated a sphere (25 cells in radius). Cell size

was 2 mm. The absorbing boundary condition (ABC) is the

eight-layer PML. The time step was 3.813 ps and the total

number of steps was 656. The incident wave was an assumed

plane wave.

Fig. 5. Calculation model for performance test

Figure 6 shows the calculation time of single and

multi-GPUs. The calculation domain was 550 × 550 × 550

cell size. Computation time is calculated for part of the

electromagnetic field update. The thread block size is 32 × 16.

Calculation speeds with two, three and four GPUs were

approximately 2, 2.9 and 3.5 times faster, respectively, than

with a single GPU. Calculation time with four GPUs was also

approximately 235 times faster than with a CPU. In contrast,

GPU-GPU communication time is much shorter than total

calculation time. The result shows that the number of GPUs

has a marked influence on calculation speed and also that

calculation with multi-GPU has high scalability.

Fig. 6. GPU/CPU speed ratio

C. Performance test for a specific example using a human

model

We usually use a vector supercomputer SX-8R (NEC)

for the three-dimensional FDTD calculation using

anatomically realistic human models because the CPU takes a

very long time to run a FDTD calculation. We therefore

403

compared the run time between multi-GPU (four GPUs) and

a supercomputer in the case of a plane wave incidence for a

numerical human model. In this performance test, we used an

anatomically realistic pregnant female model at 26 weeks

gestation developed, by Nagaoka et. al [12]. The model

consists of 2 × 2 × 2 mm3 voxels and has 56 different tissues.

The human model was assumed to be in free space. The cell

size of the calculation domain was 2 × 2 × 2 mm3. The

absorbing boundary condition was set by eight-layer PML.

The PML boundaries were set 30 cells (60 mm) away from all

parts of the human model, as shown in Fig. 7. The overall

calculation domain was thus 211 × 329 × 878 cells.

Figure 8 shows the results of the comparison. Run

times in this figure are continuously computed times from 30

MHz to 3 GHz (a total of 22 frequencies). The run times with

the multi-GPU and one node (eight CPUs) of the

supercomputer were 30,372 sec and 23,665 sec, respectively.

The thread block size for the GPU calculation was 32 × 16 in

this test. Run time on the multi-GPU was slightly (approx. 1.3

times) slower than that using the supercomputer, while run

time on a single GPU (NVIDIA Tesla C1060) was more than

five times slower than those using one node of the

supercomputer in a previous study [7]. We found that

multi-GPU is able to significantly accelerate

three-dimensional FDTD calculation with positive

implications for practical application. The result also

indicated that multi-GPU FDTD calculation may be faster

than the supercomputer if we use a workstation equipped with

more than four GPUs.

Fig. 8. Comparison run time of FDTD calculation

between GPU and supercomputer

IV. CONCLUSION

We implemented the three-dimensional FDTD method

on multi-GPU using CUDA. This study used the NVIDIA

Tesla C2070 as GPGPU boards. The GPU memory of 24 GB

became available for the FDTD calculation in the

computational environment. We tested the performance of an

FDTD calculation on multi-GPU. The results indicated the

calculation speed of three-dimensional FDTD using GPUs

can significantly improve with an expanding number of

GPUs.

ACKNOWLEDGMENT

Parts of this work were carried out using the vector

supercomputer SX-8R (NEC) at the National Institute of

Information and Communications Technology.

REFERENCES

[1] J. Kim and Y. Rahmat-Samii, “Implanted antennas inside a human

body: simulation, designs, and characterizations,” IEEE Trans.

Microwave Theory Tech., vol. 52, pp. 1934-1943, Mar. 2004.

[2] J. W. Hand, “Modeling the interaction of electromagnetic fields

(10MHz-10GHz) with the human body: methods and applications,”

Phys. Med. Biol., vol. 52, pp. R243-286, Jul. 2008.

[3] M. de Greef, J. Crezee, J. C. van Eijk, R. Pool and A. Bel, “Accelerated

ray tracing for radiotherapy dose calculations on a GPU,” Med. Phys.,

vol. 36, pp. 4095-4102, Sep. 2009.

[4] S. S. Samant, J. Xia, P. Muyan-Ozcelik and J. D. Owens, “High

performance computing for deformable image registration: towards a

new paradigm in adaptive radiotherapy,” Med. Phys., vol. 35, pp.

3546-3553, Aug. 2008.

[5] N. Takada, T. Shimobaba, N. Masuda and T. Ito, “High-speed FDTD

simulation algorithm for GPU with compute unified device

architecture,” in Proc. IEEE-APS/URSI Int. Symp., pp. 1-4, 2009.

[6] NVIDIA, NVIDIA CUDA programming guide version 3.2, NVIDIA

Corporation, 2010.

[7] T. Nagaoka and S. Watanabe, “A GPU-based calculation using the

three-dimensional FDTD method for electromagnetic field analysis,” In

Proceedings of IEEE EMBC 2010, pp. 327-330, Buenos Aires, 2010.

[8] P. Micikevicius, “3D finite difference computation on GPUs using

CUDA,” In Proceedings of 2nd Workshop on General Purpose

Processing on Graphics Processing Units (GPGPU-2), pp. 79-84,

2009.

[9] A. Taflove and S. C. Hagness, Computational Electromagnetics: The

Finite-Difference Time-Domain Method, 3rd ed., London: Artech

House Publishers, 2005.

[10] J. P. Berenger, “A perfectly matched layer for the absorption of

electromagnetic waves,” Journal of Computational Physics, pp.

185-200, 1994.

[11] D. A Jacobsen, J. C. Thibault, and I. Senocak. “An MPI-CUDA

Implementation for Massively Parallel Incompressible Flow

Computations on Multi-GPU Clusters,” 48th AIAA Aerospace Sciences

Meeting and Exhibit, 2010.

[12] T. Nagaoka, T. Tagashi, T. Saito, K. Takahashi, K. Ito and S. Watanabe,

“An anatomically realistic whole-body pregnant-woman model and

specific absorption rates for pregnant-woman exposure to

electromagnetic plane waves from 10 MHz to 2 GHz,” Phys. Med. Biol.,

vol. 52, pp. 6731-674, Nov. 2007.

Fig. 7. Calculation condition with a human model

404

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

