
  

 

Abstract—Numerical simulation with a numerical human 

model using the finite-difference time domain (FDTD) method 

has recently been performed in a number of fields in biomedical 

engineering. To improve the method’s calculation speed and 

realize large-scale computing with the numerical human model, 

we adapt three-dimensional FDTD code to a multi-GPU 

environment using Compute Unified Device Architecture 

(CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU 

boards. The performance of multi-GPU is evaluated in 

comparison with that of a single GPU and vector 

supercomputer. The calculation speed with four GPUs was 

approximately 3.5 times faster than with a single GPU, and was 

slightly (approx. 1.3 times) slower than with the supercomputer. 

Calculation speed of the three-dimensional FDTD method using 

GPUs can significantly improve with an expanding number of 

GPUs. 

I. INTRODUCTION 

UMERICAL simulation with anatomically realistic 

human models has recently been performed for studies 

on medical applications and biological effects [1], [2]. The 

finite-difference time-domain (FDTD) method, one of the 

electromagnetic analysis methods, has mainly been used in 

these studies using human models. High-performance 

computer systems, such as supercomputers, were until a few 

years ago generally needed to perform FDTD calculation 

with human models, due to the problem of large memory and 

heavy central processing unit (CPU) time. Recently, 

general-purpose computing on a graphics processing unit 

(GPGPU) has received considerable attention in many 

scientific fields [3]-[5] because a GPGPU offers high 

computational performance at low cost. 

We previously implemented the three-dimensional 

FDTD method on a GPU using Computer Unified Device 

Architecture (CUDA) [6], and also found that 

three-dimensional FDTD calculation using a single GPU can 

significantly reduce run time compared to when using a 

conventional CPU, even with a native GPU implementation 

of the three-dimensional FDTD method [7]. However, the 

available memory of a single GPU is limited.  

In this paper, to realize large scale computing with a 

human model, we adapt three-dimensional FDTD code to 

multi-GPU environments using CUDA. FDTD calculation 

using multi-GPU is also expected to greatly reduce run time 
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in comparison with that of a single GPU. The approach is 

adapted to simulate an electromagnetic field using a human 

model, and its performance is evaluated. 

II. MULTI-GPU IMPLEMENTATION OF FDTD METHOD 

A. CUDA and GPU parallel computation 

CUDA framework provides GPU parallel computation 

capability including a programming and execution 

environment. CUDA also supports multiple GPU subsystems 

(multi-GPU) in a single system. Figure 1 shows a high-level 

view of the multi-GPU system and CUDA framework.  

 

 
Fig. 1. CUDA and GPU parallel computing 

 

A program should be converted to CUDA code by a 

CUDA compiler in order to be run on a GPU. CUDA code 

consists of device code and host code. The device code runs 

on the GPU while the host code runs on a CPU. The device 

code written as a kernel program executes a fragment of 

computation code, such as for-loop body code, that can be 

computed in parallel. CUDA generates thousands of GPU 

threads that simultaneously execute device code on stream 

processors. The host code allocates and frees GPU memory, 

transfer data between CPU and GPU, and controls execution 

of the device code. 

A GPU has hundreds of processors, called stream 

processors (SPs). It is capable of executing thousands of GPU 

threads that CUDA generates, which are bundled into a 

thread block. Thread blocks are arranged into a grid [8]. 

CUDA maps parallelizable code fragment to these GPU 

threads. 

CUDA supports multi-GPU by controlling multiple 

GPUs with a single program. Each GPU requires dedicated 

CPU threads and a multi-GPU system should be equipped 

with the same number of GPUs and CPUs. GPU memory is 

dedicated to a single GPU and cannot be addressed from 

either a CPU or another GPU. In this sense, multi-GPU can be 

regarded as a distributed memory multiprocessor. 
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B. Three-dimensional FDTD computation on a single 

GPU 

FDTD is the most popular method of computational 

electromagnetic simulation because of its simple algorithm 

and very high computational efficiency using modern 

computer equipment [9]. The method also has application 

with an anatomically realistic human model with complex 

shape and internal structure [2]. 

Figure 2 shows the total flow of the three-dimensional 

FDTD method for a single GPU computation. There are four 

tasks within each time step for the GPU side in this figure: 

electric field computation (e_field), perfectly matched layers 

(PML) computation for electric field (e_pml) as the absorbing 

boundary condition [10], magnetic field computation 

(h_field) and PML for magnetic field (h_pml). All field 

updates in each time step can be parallelized and are 

offloaded to the GPU. 

Our original three-dimensional FDTD program is 

written in C and converted to CUDA code to be executed on a 

single GPU. The three-dimensional FDTD process starts with 

initialization tasks such as memory allocation, parameters and 

GPU setup. Initial values for GPU computation are then 

transferred to GPU memory. Time step loop including e_field, 

e_pml, h_field and h_pml follows. After the time ends, results 

of GPU computation are transferred from GPU to Host (CPU). 

Finally, SAR computation is done by Host. Our GPU 

three-dimensional FDTD program requires no data transfer 

for field updates because all computations within each time 

step are purely executed by GPU. 

 

 
 

Fig. 2. FDTD process flow for single GPU processing 

  

Electric field and magnetic field are three-dimensional 

vector fields. Six three-dimensional arrays are used for the 

field component; EX, EY, EZ, HX, HY and HZ. All the field 

computations, e_field, e_pml, h_field and h_pml, contain 

three-dimensional parallelizable for-loop and are converted 

to CUDA kernel codes. These kernel codes are called 

sequentially for each time step. 

A typical for-loop would be: 

 

 
Since CUDA currently does not support a 

three-dimensional grid, up to two-dimensional for-loop can 

be parallelized in a straight way. We put a for-loop for the Z 

direction in a kernel program. 

C. Multi-GPU parallelism 

For multi-GPU parallelism, it is necessary to partition 

data arrays such as electric fields among multiple GPUs. We 

divide three-dimensional arrays in the Z direction [11]. As 

noted above, each GPU is capable of addressing only local 

GPU memory and ghost nodes should be added to each 

instance of decomposed data. FDTD schema is the first-order 

partial differential equation, and it is necessary to add a single 

slice of ghost nodes at the boundary of the decomposed data. 

These ghost node values need to be updated for each time step 

by communicating with the neighboring GPU [8], [11]. 

We describe ghost node updates with a two GPU 

system, but extending to n-GPU is straight-forward. Let 

GPU#0 holds E and H arrays from Z=1 to Z=100 and GPU#1 

holds Z=101 to Z=200. EX[z][y][x] depends on HY[z][y][x] 

and HY[z-1][y][x]. We note the dependency as: 

EX[z][y][x] ← HY[z][y][x] , HY[z-1][y][x] 

In this notation, HY depends on EX as: 

HY[z][y][x] ← EX[z][y][x] , EX[z+1][y][x] 

At the boundary of data for each GPU, z=100: 

For GPU #0 

EX[100][y][x] ← HY[100][y][x], HY[99][y][x] 

HY[100][y][x] ← EX[100][y][x], EX[101][y][x] 

For GPU #1 

EX[101][y][x] ← HY[101][y][x], HY[100][y][x] 

HY[101][y][x] ← EX[101][y][x], EX[102][y][x] 

From these dependencies, it is necessary to add 

EX[101][y][x] for all x and y to data of GPU#0 as ghost 

nodes. At the same time, HY[100][y][x] for any x and y are 

added to the data of GPU#1 as ghost nodes. 

EX, HY and other variables are updated at each time 

step, but ghost node values are only referenced and not 

updated. Updated values are copied from the neighboring 

GPU. For example HY[100][y][x] are updated on GPU#0, 

and ghost nodes HY[100][y][x] on GPU#1 are updated by 

copying the value on GPU#0. 

Figure 3 shows ghost nodes and updates via GPU 

communication. The left figure shows ghost nodes of EX 

[101][y][x] for GPU#0 and the right figure HY[101][y][x] for 

GPU#1. GPU#1 is responsible for updating EX[101][y][x]. 

After GPU#1 updates EX[101][y][x], the data value is 

transferred to GPU#0. Ghost nodes of HY[101][y][x] are 

managed in the same way as EX. Other variables such as EY, 

EZ, HX and HZ are managed in the same way as EX and HY. 
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Fig. 3. Ghost nodes updates and GPU communication for each step 

 

D. Implementation of the multi-GPU approach with Open 

MP 

Our target multi-GPU system is a single system with 

multiple GPUs. GPU-GPU communication is achieved via 

host memory on this system, which is a combination of 

GPU-Host and Host-GPU data transfer. Each GPU requires 

dedicated CPU threads. OpenMP is used to create CPU 

threads and control their execution including thread 

synchronization. Figure 4 shows a two-GPU case of 

multi-GPUed FDTD time step. A single-GPU version of the 

FDTD time step is replaced with that of the multi-GPU 

version. 

The first OpenMP task is to create a parallel region 

with the number of GPUs threads. After electric field 

computation (e_field, e_pml) is completed on two GPUs, 

ghost nodes for the electric field are updated with GPU#1 

values (right-left arrow). CPU threads are synchronized 

before starting magnetic field computation (h_field, h_pml) 

with OpenMP barrier synchronization at GPU-GPU 

communication. After magnetic field computation is 

completed, ghost nodes for the magnetic field are updated 

with GPU#0 values (left-right arrow). 

 

 
Fig. 4. Multi-GPU version of FDTD time step loop 

III. PERFORMANCE TESTS 

A. Computational environment 

In this study, we used an NVIDIA Tesla C2070 as the 

GPGPU board. It has 448 scalar processer (SP) cores and 

6GB GDDR5 RAM. The core clock and memory bandwidth 

of the board are also 1.15 GHz and 144 GB/sec, respectively. 

We used a workstation equipped with Intel 4-Core Xeon 

X5620 (2.4GB) as the CPU and 48 GB memory (6 × 8 GB 

DDR3-1066 with ECC), and Ubuntu 10.04 64-bit Linux as 

the operating system. The four GPU boards (Tesla C2070) 

were mounted on a workstation. Therefore, GPU memory of 

24 GB is available in the environment. We used the NVIDIA 

Linux driver (190.18) for the GPU, and gcc 4.3.3 and CUDA 

3.2 as the compilers of the CPU and GPU, respectively. 

B. Performance of multi-GPU FDTD calculation 

To examine the performance of the FDTD calculation 

on multi-GPU, we conducted a test using the calculation 

model shown in Fig. 5. The model was a cube domain, and its 

center was allocated a sphere (25 cells in radius). Cell size 

was 2 mm. The absorbing boundary condition (ABC) is the 

eight-layer PML. The time step was 3.813 ps and the total 

number of steps was 656. The incident wave was an assumed 

plane wave. 

 

 
Fig. 5. Calculation model for performance test 

 

Figure 6 shows the calculation time of single and 

multi-GPUs. The calculation domain was 550 × 550 × 550 

cell size. Computation time is calculated for part of the 

electromagnetic field update. The thread block size is 32 × 16. 

Calculation speeds with two, three and four GPUs were 

approximately 2, 2.9 and 3.5 times faster, respectively, than 

with a single GPU. Calculation time with four GPUs was also 

approximately 235 times faster than with a CPU. In contrast, 

GPU-GPU communication time is much shorter than total 

calculation time. The result shows that the number of GPUs 

has a marked influence on calculation speed and also that 

calculation with multi-GPU has high scalability.  

 
Fig. 6. GPU/CPU speed ratio 

 

C. Performance test for a specific example using a human 

model 

We usually use a vector supercomputer SX-8R (NEC) 

for the three-dimensional FDTD calculation using 

anatomically realistic human models because the CPU takes a 

very long time to run a FDTD calculation. We therefore 
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compared the run time between multi-GPU (four GPUs) and 

a supercomputer in the case of a plane wave incidence for a 

numerical human model. In this performance test, we used an 

anatomically realistic pregnant female model at 26 weeks 

gestation developed, by Nagaoka et. al [12]. The model 

consists of 2 × 2 × 2 mm3 voxels and has 56 different tissues. 

The human model was assumed to be in free space. The cell 

size of the calculation domain was 2 × 2 × 2 mm3. The 

absorbing boundary condition was set by eight-layer PML. 

The PML boundaries were set 30 cells (60 mm) away from all 

parts of the human model, as shown in Fig. 7. The overall 

calculation domain was thus 211 × 329 × 878 cells. 

 

Figure 8 shows the results of the comparison. Run 

times in this figure are continuously computed times from 30 

MHz to 3 GHz (a total of 22 frequencies). The run times with 

the multi-GPU and one node (eight CPUs) of the 

supercomputer were 30,372 sec and 23,665 sec, respectively. 

The thread block size for the GPU calculation was 32 × 16 in 

this test. Run time on the multi-GPU was slightly (approx. 1.3 

times) slower than that using the supercomputer, while run 

time on a single GPU (NVIDIA Tesla C1060) was more than 

five times slower than those using one node of the 

supercomputer in a previous study [7]. We found that 

multi-GPU is able to significantly accelerate 

three-dimensional FDTD calculation with positive 

implications for practical application. The result also 

indicated that multi-GPU FDTD calculation may be faster 

than the supercomputer if we use a workstation equipped with 

more than four GPUs. 

 

Fig. 8. Comparison run time of FDTD calculation  

between GPU and supercomputer 

IV. CONCLUSION 

We implemented the three-dimensional FDTD method 

on multi-GPU using CUDA. This study used the NVIDIA 

Tesla C2070 as GPGPU boards.  The GPU memory of 24 GB 

became available for the FDTD calculation in the 

computational environment.  We tested the performance of an 

FDTD calculation on multi-GPU. The results indicated the 

calculation speed of three-dimensional FDTD using GPUs 

can significantly improve with an expanding number of 

GPUs.  
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