
  

Abstract—Future multiscale and multiphysics models must use 

the power of high performance computing (HPC) systems to 

enable research into human disease, translational medical science, 

and treatment. Previously we showed that computationally 

efficient multiscale models will require the use of sophisticated 

hybrid programming models, mixing distributed message passing 

processes (e.g. the message passing interface (MPI)) with 

multithreading (e.g. OpenMP, POSIX pthreads). The objective of 

this work is to compare the performance of such hybrid 

programming models when applied to the simulation of a 

lightweight multiscale cardiac model. Our results show that the 

hybrid models do not perform favourably when compared to an 

implementation using only MPI which is in contrast to our results 

using complex physiological models. Thus, with regards to 

lightweight multiscale cardiac models, the user may not need to 

increase programming complexity by using a hybrid 

programming approach. However, considering that model 

complexity will increase as well as the HPC system size in both 

node count and number of cores per node, it is still foreseeable 

that we will achieve faster than real time multiscale cardiac 

simulations on these systems using hybrid programming models. 

I. INTRODUCTION 

ULTISCALE, multiphysics models require 

supercomputing resources to perform basic research into 

human diseases and disease progression [1-3]. Message 

passing has been a programming model that allows the design 

of parallel programs on massively parallel, distributed memory 

supercomputers like the IBM Blue Gene supercomputer. With 

the current trend of having multiple compute cores on a 

physical node, hybrid programming models can offer 

multithreading on the compute node while message passing is 

used for communication between nodes. In our previous work 

[4] we showed that hybrid programming models have an 

advantage over the pure message passing model. However, in 

that study we used a model that was computation bound. In 
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this article we want to compare hybrid programming models of 

computationally lightweight multiscale cardiac models.  

II. METHODS 

The method used in this study has the same setup as 

described in [4] except for changing the cell model for  the 

multiscale cardiac simulations. This is required to be able to 

perform comparisons between computationally heavy models 

and the lightweight model used in this study. We give an 

overview of our method in the following section. 

A. Architecture of the IBM Blue Gene/P supercomputer 

All of our tests were performed on an IBM Blue Gene/P 

(BG/P). It is a massively parallel, distributed memory 

supercomputer. We use its high speed torus network for 

communication between compute nodes. Each compute node 

has four 850 MHz PowerPC cores connected to a local 

memory unit of 4GB. BG/P can be configured to run in one of 

three modes: SMP – one process per node, up to four threads 

per process; Dual – two processes per node, up to two threads 

per process; Virtual Node (VN) – four separate processes per 

node, one thread per process. 

Threads share the address space of their containing process, 

whereas each process has a distinct address space. Thus, in the 

SMP model the process has a 4GB address space that all four 

threads can access while in VN mode each process has only 

1GB address space. With regards to these particulars, a future 

looking programming model from multiscale, multiphysics 

biomedical simulations needs to make use of this particular 

system architecture by using hybrid programming models for 

computational efficiency. 

B. Data decomposition and communication framework 

As previously described [3-6] we apply the orthogonal 

recursive bisection algorithm (ORB) for data decomposition. 

This allows us to create a number of subvolumes that 

corresponds to the number of MPI tasks. The communication 

framework ensures that the values of adjacent subvolumes are 

stored in a ghost layer around the subvolume associated with 

the respective MPI task so that the diffusion term can be 

computed without introducing errors. This communication 

framework is the same for all three programming models we 

investigated. 

C. Programming models 

1) MPI model 

The simplest approach regarding programming complexity 
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is a purely MPI implementation because it only involves a 

single parallel programming interface. We will call this the 

MPI model and it serves as baseline implementation for our 

comparisons. By using the VN mode of the BG/P each MPI 

process runs on a separate core, giving four processes per 

node.  

2) MPI and OpenMP Model 

Programming complexity increases by adding parallelism in 

shared memory on each compute node. We use the OpenMP 

application programmer interface to define regions in the 

source code that are to be parallelized with so called 

#pragma statements. OpenMP then handles thread creation 

and synchronization without the user requiring an 

understanding of threads. We parallelize the reaction-diffusion 

computation only and let the master thread carry out the 

communication. The #pragma omp parallel 

default(shared) directive declares the parallel region of 

the program which comprises the computation phase. The 

diffusion term is then parallelized using the #pragma omp 

for nowait directive which allows the threads to carry on 

the computation beyond the end of the loop. We enforce a 

synchronization step after the computation of the reaction part 

by using the same directive without the nowait option. The 

same holds for the synchronization step after the 

communication phase which is implicitly enforced by using the 

MPI's wait function. We automatically have two barrier 

functions for synchronization and thus, data coherency is 

ensured. We will call this implementation the MPI+OpenMP 

hybrid programming model that allows the user to semi-

automatically add threads to the original MPI code.  

3) MPI and POSIX pthreads Model 

Our second hybrid programming model uses MPI for inter-

node communication and POSIX pthreads for intra-node 

computation. The programming complexity increases because 

the programmer has to understand thread creation and 

synchronization. Also, data structures have to be created 

manually for the parallel regions of the code. We adopt the 

peer programming model where the master thread takes part in 

the computation. Thus, all threads carry out the same amount 

of computational work. However, our implementation, the 

master does communicate while the worker threads are paused. 

Synchronisation is carried out by the pthreads barrier 

primitive, which ensures data coherency. We call this 

approach the MPI+pthreads model. 

Both hybrid programming models  enable us to reduce the 

level of data decomposition by two bisections: instead of e.g. 

16,384 MPI tasks we have 4,096 MPI tasks with four threads 

each. The reduced number of MPI tasks leads to a smaller 

number of subvolumes. Since the transmembrane voltage of 

tissue at the surface of the subvolumes needs to be 

communicated only, the global communication load on the 

network is reduced because the sum of surfaces of the smaller 

number of subvolumes is smaller than for the larger number of 

subvolumes. On each SMP node the computation load is then 

simply divided equally by four (the number of threads).  

The MPI+OpenMP implementation has the same 

communication-computation framework as the MPI+pthreads 

implementation. The difference between the two is that using 

pthreads we have to explicitly define the synchronization of 

pthreads and carry out the data decomposition for each thread 

manually. Both are hidden from the programmer using 

OpenMP. 

D. Lightweight Multiscale Cardiac Model 

To create a lightweight multiscale cardiac model for 

propagation studies, we use the monodomain reaction-

diffusion model of cardiac excitation [7]. The model equation 

is given by 
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The transmembrane potential Vm describes the cellular 

excitation. The surface to volume ratio and the membrane 

capacitance is given by Am and Cm, respectively. σ is the 

anisotropic conductivity tensor and Is the stimulus currents. 

The ionic current density Iion is computed by the 

electrophysiological cell models in the simulations. To have a 

computationally light weight model we choose the FitzHugh-

Nagumo model [8, 9] to compute the reaction term. The 

ventricles of the Visible Female data set (National Library of 

Medicine, Bethesda, Maryland, USA) defines the anatomy 

with 0.2 mm cubic resolution resulting in 32.5 million active 

elements in a data set of 128.9 million elements. We use 

explicit Euler method to solve the reaction term and finite 

difference method for the diffusion part. Our program flow is 

given by 

• Initialization 
• Time step loop 

o Communication phase 

o Computation of diffusion term (loop) 

o Computation of reaction term (loop) 

For benchmarking we carry out strong scaling simulations 

for all three programming models described in section II.D. 

We record overall maximum run time as well as computation 

and communication times. We simulate 1000 time steps with 

0.01 ms per time step yielding a 10 ms simulation. The 

smallest computer partition size used is 128 SMP nodes 

equaling 512 CPUs. We increase the number of SMP nodes by 

powers of two. The largest computer partition available to us 

is a four rack IBM Blue Gene/P supercomputer with 16,384 

cores. As a measure of load balance we also show the ratio of 

average vs. maximum time for both computation and 

communication. As this value reaches one, load balance 

becomes ideal. Finally, we will show and discuss the speedup 

factors with reference to the 128 SMP node partition. 

III. RESULTS 

The run times decrease linearly with the number of cores for 

all programming models (Fig. 1, Tab. I). The fastest run times 

are given by the baseline  
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(a)                                                                                             (b) 

Fig. 1 Performance results: (a) maximum run times (b) overall scaling with respect to the smallest processor partition N = 512 cores 

 . 

MPI model in VN mode. Here, the run time on 512 cores is 

68.28s which comes down to 2.14s on 16,384 cores. For the 

MPI+OpenMP and MPI+pthread models the times are 

82.83s down to 2.54s and 89.67s to 2.70s, respectively. 

Thus, the MPI+OpenMP model performs better than the 

MPI+pthreads model. Looking at the speedup factors (Tab. 

I) the results demonstrate that both hybrid programming 

models show higher speedup factors than the non-hybrid 

model. The overall speedup factors for the baseline at 512 

cores are 31.87, 32.59 and 33.18 for the MPI, 

MPI+OpenMP and MPI+pthreads model, respectively. 

Indeed, all speedup factors are above the theoretical value 

for all programming models and all partitions. The exception 

is the MPI model where the speedup factor of 31.87 from 

512 to 16.384 cores is just below the theoretical value of 32.  

The load balance measure for computation phase shows 

values above 0.8 for mostly all programming models (Tab. 

II) and partitions which demonstrates that the ORB algorithm 

TABLE I 

MAXIMUM RUN TIMES AND SPEEDUP FACTORS 

 Max. run time [s] Speedup vs. next smaller N Overall speedup 

N cores VN OpenMP pthreads VN OpenMP pthreads VN OpenMP pthreads 

512 68.28 82.83 89.67 - - - - - - 

1,024 32.01 38.51 42.04 2.13 2.15 2.13 2.13 2.15 2.13 

2,048 15.72 18.46 20.27 2.04 2.09 2.07 4.34 4.49 4.42 

4,096 8.06 8.91 10.01 1.95 2.07 2.02 8.48 9.30 8.96 

8,192 3.89 4.45 4.88 2.07 2.00 2.05 17.56 18.62 19.36 

16,384 2.14 2.54 2.70 1.81 1.75 1.80 31.87 32.59 33.18 

 
TABLE II 

TIMING FOR REACTION – DIFFUSION PHASE 

 MPI MPI+OpenMP MPI+pthreads 

N cores avg. [s] max. [s] avg/max avg. [s] max. [s] avg/max avg. [s] max. [s] avg/max 

512 59.11 67.32 0.88 65.93 80.81 0.82 73.70 87.85 0.84 

1,024 26.31 31.37 0.84 31.66 37.30 0.85 35.65 40.78 0.87 

2,048 12.42 15.35 0.81 15.19 17.44 0.87 17.20 19.26 0.89 

4,096 5.98 7.61 0.79 6.80 8.28 0.82 7.80 9.41 0.83 

8,192 2.92 3.62 0.81 3.26 4.01 0.81 3.73 4.55 0.82 

16,384 1.43 1.93 0.74 1.62 1.98 0.82 1.83 2.27 0.81 

 

TABLE III 

TIMING FOR COMMUNICATION PHASE 

 MPI MPI+OpenMP MPI+pthreads 

N cores avg. [s] max. [s] avg/max avg. [s] max. [s] avg/max avg. [s] max. [s] avg/max 

512 9.12 36.01 0.25 16.80 39.16 0.43 15.87 39.95 0.40 

1,024 5.68 31.99 0.18 6.82 33.86 0.20 6.35 23.74 0.27 

2,048 3.27 15.71 0.21 3.25 10.01 0.32 3.05 10.86 0.28 

4,096 2.06 8.05 0.26 2.09 8.91 0.23 2.19 10.01 0.22 

8,192 0.96 3.88 0.25 1.17 4.45 0.26 1.14 4.88 0.23 

16,384 0.70 2.14 0.33 0.91 2.54 0.36 0.86 2.70 0.32 
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for data decomposition of the computation phase is 

reasonable. In general, the load balance on partitions with up 

to 2,048 cores is better than for the larger partitions. The 

load balance for the communication phase (Tab. III) is not 

ideal with values between 0.18 to 0.33 for the MPI model, 

0.20 to 0.43 and 0.22 – 0.40 for the MPI+OpenMP and 

MPI+pthreads model, respectively. While the MPI models 

load balance measure for the communication time is below 

the values of the hybrid programming models, it has the 

lower values for the maximum communication time for all 

partitions. 

IV. DISCUSSION 

The speedup factors show that the simulations scale well 

for all programming models to 16,384 cores despite the poor 

load balance in the communication phase. The speedup is 

best for the MPI+OpenMP model up to 2,048 cores. Then 

the MPI+pthread model takes over to yield the highest 

speedup factor for 16,384 cores. Thus, with respect to 

speedup and efficiency, the MPI+pthread hybrid 

programming model with the highest programming 

complexity outperforms the others on the largest partition 

used in this study.  

Having said that, the maximum run times show the 

opposite picture.  The MPI model is 1.17±0.065 times faster 

than the MPI+OpenMP model and 1.28±0.036 times faster 

than the MPI+pthread model across all partitions. This is in 

contrast to the results in [4] where the hybrid programming 

models overall perform better than the MPI model with the 

MPI+OpenMP model showing the best performance. Since 

we use a very lightweight cardiac model that has a ten times 

faster execution time compared with the model in [4], the 

simulation is less compute bound. This leads to the 

communication overhead to have a greater effect on the 

simulation. The hybrid programming models have an 

additional synchronization step, in the form of a barrier 

primitive prior to the communication phase, which is not 

needed in the MPI model. We believe this leads to the slower 

run times for the hybrid programming models. 

However, our implementation using hybrid programming 

models does not take advantage of all threads in the 

communication phase. Currently, the worker threads are 

waiting without doing work during that phase. Thus, there is 

potential to improve the performance. This can be achieved 

by either two strategies. Either all worker threads participate 

in the communication phase as well, or the worker threads 

start the computation of the inner tissue elements in the 

subvolume while the master carries out the communication 

of border values. Once this has been completed, the reaction-

diffusion equations can be solved for those as well. Hence, 

hybrid programming models allow for more sophisticated 

program design with regards to interleaving computation and 

communication phases.  

Also, our implementation the computational load only is 

considered during data decomposition. Thus, further 

performance improvement can be achieved by more 

sophisticated load balance strategies. Nevertheless, our 

current implementation of the lightweight multiscale cardiac 

model achieves a run time of just over 3.5 minutes for a 

1000 ms simulation run. 

V. CONCLUSION 

This work indicates that a model developer does not have 

to add programming complexity by using hybrid 

programming models for lightweight multiscale cardiac 

models. However, the communication and computation 

phases are kept separate, which is a simplification that can be 

improved upon. Making use of the computing power of the 

worker threads during the communication phase will 

certainly increase performance. We believe the performance 

advantage of hybrid models will be more apparent on future 

HPC systems because they will have many more hardware 

threads than current systems. 

We acknowledge that more sophisticated and optimized 

multiscale cardiac models exist. Bearing that in mind, it is 

easily foreseeable that combining our methods and those 

models will yield faster than real time simulation run times in 

the near future. 
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