

Abstract—Future multiscale and multiphysics models must use

the power of high performance computing (HPC) systems to

enable research into human disease, translational medical science,

and treatment. Previously we showed that computationally

efficient multiscale models will require the use of sophisticated

hybrid programming models, mixing distributed message passing

processes (e.g. the message passing interface (MPI)) with

multithreading (e.g. OpenMP, POSIX pthreads). The objective of

this work is to compare the performance of such hybrid

programming models when applied to the simulation of a

lightweight multiscale cardiac model. Our results show that the

hybrid models do not perform favourably when compared to an

implementation using only MPI which is in contrast to our results

using complex physiological models. Thus, with regards to

lightweight multiscale cardiac models, the user may not need to

increase programming complexity by using a hybrid

programming approach. However, considering that model

complexity will increase as well as the HPC system size in both

node count and number of cores per node, it is still foreseeable

that we will achieve faster than real time multiscale cardiac

simulations on these systems using hybrid programming models.

I. INTRODUCTION

ULTISCALE, multiphysics models require

supercomputing resources to perform basic research into

human diseases and disease progression [1-3]. Message

passing has been a programming model that allows the design

of parallel programs on massively parallel, distributed memory

supercomputers like the IBM Blue Gene supercomputer. With

the current trend of having multiple compute cores on a

physical node, hybrid programming models can offer

multithreading on the compute node while message passing is

used for communication between nodes. In our previous work

[4] we showed that hybrid programming models have an

advantage over the pure message passing model. However, in

that study we used a model that was computation bound. In

Manuscript received, March 24th 2011. This research was supported by a

Victorian Life Sciences Computation Initiative (VLSCI) grant number

VR0088 on its Peak Computing Facility at the University of Melbourne, an

initiative of the Victorian Government.

B. J. Pope is with the Victorian Life Science Computation Initiative, 187

Grattan Street, Carlton, VIC 3010, Australia (e-mail:

bjpope@unimelb.edu.au).

B. G. Fitch, M. C. Pitman and J. J. Rice are with the IBM T. J. Watson

Research Center, 1101 Kitchawan Road, Yorktown Heights, NY, 10598 USA

(e-mail: {bgf, pitman, johnrice}@us.ibm.com).

M. Reumann is with the IBM Research Collaboratory for Life Sciences-

Melbourne, 187 Grattan Street, Carlton, VIC 3010, Australia and the Dept.

Computer Science and Software Engineering, University of Melbourne

(corresponding author phone: +61 3 9035 4432 e-mail: m

 reumann@ieee.org).

this article we want to compare hybrid programming models of

computationally lightweight multiscale cardiac models.

II. METHODS

The method used in this study has the same setup as

described in [4] except for changing the cell model for the

multiscale cardiac simulations. This is required to be able to

perform comparisons between computationally heavy models

and the lightweight model used in this study. We give an

overview of our method in the following section.

A. Architecture of the IBM Blue Gene/P supercomputer

All of our tests were performed on an IBM Blue Gene/P

(BG/P). It is a massively parallel, distributed memory

supercomputer. We use its high speed torus network for

communication between compute nodes. Each compute node

has four 850 MHz PowerPC cores connected to a local

memory unit of 4GB. BG/P can be configured to run in one of

three modes: SMP – one process per node, up to four threads

per process; Dual – two processes per node, up to two threads

per process; Virtual Node (VN) – four separate processes per

node, one thread per process.

Threads share the address space of their containing process,

whereas each process has a distinct address space. Thus, in the

SMP model the process has a 4GB address space that all four

threads can access while in VN mode each process has only

1GB address space. With regards to these particulars, a future

looking programming model from multiscale, multiphysics

biomedical simulations needs to make use of this particular

system architecture by using hybrid programming models for

computational efficiency.

B. Data decomposition and communication framework

As previously described [3-6] we apply the orthogonal

recursive bisection algorithm (ORB) for data decomposition.

This allows us to create a number of subvolumes that

corresponds to the number of MPI tasks. The communication

framework ensures that the values of adjacent subvolumes are

stored in a ghost layer around the subvolume associated with

the respective MPI task so that the diffusion term can be

computed without introducing errors. This communication

framework is the same for all three programming models we

investigated.

C. Programming models

1) MPI model

The simplest approach regarding programming complexity

Petascale Computation Performance of Lightweight Multiscale

Cardiac Models using Hybrid Programming Models

Bernard J Pope, Blake G Fitch, Member IEEE, Michael C Pitman, John J Rice, Matthias Reumann,

Member, IEEE

M

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 433

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

is a purely MPI implementation because it only involves a

single parallel programming interface. We will call this the

MPI model and it serves as baseline implementation for our

comparisons. By using the VN mode of the BG/P each MPI

process runs on a separate core, giving four processes per

node.

2) MPI and OpenMP Model

Programming complexity increases by adding parallelism in

shared memory on each compute node. We use the OpenMP

application programmer interface to define regions in the

source code that are to be parallelized with so called

#pragma statements. OpenMP then handles thread creation

and synchronization without the user requiring an

understanding of threads. We parallelize the reaction-diffusion

computation only and let the master thread carry out the

communication. The #pragma omp parallel

default(shared) directive declares the parallel region of

the program which comprises the computation phase. The

diffusion term is then parallelized using the #pragma omp

for nowait directive which allows the threads to carry on

the computation beyond the end of the loop. We enforce a

synchronization step after the computation of the reaction part

by using the same directive without the nowait option. The

same holds for the synchronization step after the

communication phase which is implicitly enforced by using the

MPI's wait function. We automatically have two barrier

functions for synchronization and thus, data coherency is

ensured. We will call this implementation the MPI+OpenMP

hybrid programming model that allows the user to semi-

automatically add threads to the original MPI code.

3) MPI and POSIX pthreads Model

Our second hybrid programming model uses MPI for inter-

node communication and POSIX pthreads for intra-node

computation. The programming complexity increases because

the programmer has to understand thread creation and

synchronization. Also, data structures have to be created

manually for the parallel regions of the code. We adopt the

peer programming model where the master thread takes part in

the computation. Thus, all threads carry out the same amount

of computational work. However, our implementation, the

master does communicate while the worker threads are paused.

Synchronisation is carried out by the pthreads barrier

primitive, which ensures data coherency. We call this

approach the MPI+pthreads model.

Both hybrid programming models enable us to reduce the

level of data decomposition by two bisections: instead of e.g.

16,384 MPI tasks we have 4,096 MPI tasks with four threads

each. The reduced number of MPI tasks leads to a smaller

number of subvolumes. Since the transmembrane voltage of

tissue at the surface of the subvolumes needs to be

communicated only, the global communication load on the

network is reduced because the sum of surfaces of the smaller

number of subvolumes is smaller than for the larger number of

subvolumes. On each SMP node the computation load is then

simply divided equally by four (the number of threads).

The MPI+OpenMP implementation has the same

communication-computation framework as the MPI+pthreads

implementation. The difference between the two is that using

pthreads we have to explicitly define the synchronization of

pthreads and carry out the data decomposition for each thread

manually. Both are hidden from the programmer using

OpenMP.

D. Lightweight Multiscale Cardiac Model

To create a lightweight multiscale cardiac model for

propagation studies, we use the monodomain reaction-

diffusion model of cardiac excitation [7]. The model equation

is given by

() sion
m

mmm II
t

V
CAV −








+=∇⋅∇

∂
∂

σ (equation 1)

The transmembrane potential Vm describes the cellular

excitation. The surface to volume ratio and the membrane

capacitance is given by Am and Cm, respectively. σ is the

anisotropic conductivity tensor and Is the stimulus currents.

The ionic current density Iion is computed by the

electrophysiological cell models in the simulations. To have a

computationally light weight model we choose the FitzHugh-

Nagumo model [8, 9] to compute the reaction term. The

ventricles of the Visible Female data set (National Library of

Medicine, Bethesda, Maryland, USA) defines the anatomy

with 0.2 mm cubic resolution resulting in 32.5 million active

elements in a data set of 128.9 million elements. We use

explicit Euler method to solve the reaction term and finite

difference method for the diffusion part. Our program flow is

given by

• Initialization
• Time step loop

o Communication phase

o Computation of diffusion term (loop)

o Computation of reaction term (loop)

For benchmarking we carry out strong scaling simulations

for all three programming models described in section II.D.

We record overall maximum run time as well as computation

and communication times. We simulate 1000 time steps with

0.01 ms per time step yielding a 10 ms simulation. The

smallest computer partition size used is 128 SMP nodes

equaling 512 CPUs. We increase the number of SMP nodes by

powers of two. The largest computer partition available to us

is a four rack IBM Blue Gene/P supercomputer with 16,384

cores. As a measure of load balance we also show the ratio of

average vs. maximum time for both computation and

communication. As this value reaches one, load balance

becomes ideal. Finally, we will show and discuss the speedup

factors with reference to the 128 SMP node partition.

III. RESULTS

The run times decrease linearly with the number of cores for

all programming models (Fig. 1, Tab. I). The fastest run times

are given by the baseline

434

(a) (b)

Fig. 1 Performance results: (a) maximum run times (b) overall scaling with respect to the smallest processor partition N = 512 cores

 .

MPI model in VN mode. Here, the run time on 512 cores is

68.28s which comes down to 2.14s on 16,384 cores. For the

MPI+OpenMP and MPI+pthread models the times are

82.83s down to 2.54s and 89.67s to 2.70s, respectively.

Thus, the MPI+OpenMP model performs better than the

MPI+pthreads model. Looking at the speedup factors (Tab.

I) the results demonstrate that both hybrid programming

models show higher speedup factors than the non-hybrid

model. The overall speedup factors for the baseline at 512

cores are 31.87, 32.59 and 33.18 for the MPI,

MPI+OpenMP and MPI+pthreads model, respectively.

Indeed, all speedup factors are above the theoretical value

for all programming models and all partitions. The exception

is the MPI model where the speedup factor of 31.87 from

512 to 16.384 cores is just below the theoretical value of 32.

The load balance measure for computation phase shows

values above 0.8 for mostly all programming models (Tab.

II) and partitions which demonstrates that the ORB algorithm

TABLE I

MAXIMUM RUN TIMES AND SPEEDUP FACTORS

 Max. run time [s] Speedup vs. next smaller N Overall speedup

N cores VN OpenMP pthreads VN OpenMP pthreads VN OpenMP pthreads

512 68.28 82.83 89.67 - - - - - -

1,024 32.01 38.51 42.04 2.13 2.15 2.13 2.13 2.15 2.13

2,048 15.72 18.46 20.27 2.04 2.09 2.07 4.34 4.49 4.42

4,096 8.06 8.91 10.01 1.95 2.07 2.02 8.48 9.30 8.96

8,192 3.89 4.45 4.88 2.07 2.00 2.05 17.56 18.62 19.36

16,384 2.14 2.54 2.70 1.81 1.75 1.80 31.87 32.59 33.18

TABLE II

TIMING FOR REACTION – DIFFUSION PHASE

 MPI MPI+OpenMP MPI+pthreads

N cores avg. [s] max. [s] avg/max avg. [s] max. [s] avg/max avg. [s] max. [s] avg/max

512 59.11 67.32 0.88 65.93 80.81 0.82 73.70 87.85 0.84

1,024 26.31 31.37 0.84 31.66 37.30 0.85 35.65 40.78 0.87

2,048 12.42 15.35 0.81 15.19 17.44 0.87 17.20 19.26 0.89

4,096 5.98 7.61 0.79 6.80 8.28 0.82 7.80 9.41 0.83

8,192 2.92 3.62 0.81 3.26 4.01 0.81 3.73 4.55 0.82

16,384 1.43 1.93 0.74 1.62 1.98 0.82 1.83 2.27 0.81

TABLE III

TIMING FOR COMMUNICATION PHASE

 MPI MPI+OpenMP MPI+pthreads

N cores avg. [s] max. [s] avg/max avg. [s] max. [s] avg/max avg. [s] max. [s] avg/max

512 9.12 36.01 0.25 16.80 39.16 0.43 15.87 39.95 0.40

1,024 5.68 31.99 0.18 6.82 33.86 0.20 6.35 23.74 0.27

2,048 3.27 15.71 0.21 3.25 10.01 0.32 3.05 10.86 0.28

4,096 2.06 8.05 0.26 2.09 8.91 0.23 2.19 10.01 0.22

8,192 0.96 3.88 0.25 1.17 4.45 0.26 1.14 4.88 0.23

16,384 0.70 2.14 0.33 0.91 2.54 0.36 0.86 2.70 0.32

435

for data decomposition of the computation phase is

reasonable. In general, the load balance on partitions with up

to 2,048 cores is better than for the larger partitions. The

load balance for the communication phase (Tab. III) is not

ideal with values between 0.18 to 0.33 for the MPI model,

0.20 to 0.43 and 0.22 – 0.40 for the MPI+OpenMP and

MPI+pthreads model, respectively. While the MPI models

load balance measure for the communication time is below

the values of the hybrid programming models, it has the

lower values for the maximum communication time for all

partitions.

IV. DISCUSSION

The speedup factors show that the simulations scale well

for all programming models to 16,384 cores despite the poor

load balance in the communication phase. The speedup is

best for the MPI+OpenMP model up to 2,048 cores. Then

the MPI+pthread model takes over to yield the highest

speedup factor for 16,384 cores. Thus, with respect to

speedup and efficiency, the MPI+pthread hybrid

programming model with the highest programming

complexity outperforms the others on the largest partition

used in this study.

Having said that, the maximum run times show the

opposite picture. The MPI model is 1.17±0.065 times faster

than the MPI+OpenMP model and 1.28±0.036 times faster

than the MPI+pthread model across all partitions. This is in

contrast to the results in [4] where the hybrid programming

models overall perform better than the MPI model with the

MPI+OpenMP model showing the best performance. Since

we use a very lightweight cardiac model that has a ten times

faster execution time compared with the model in [4], the

simulation is less compute bound. This leads to the

communication overhead to have a greater effect on the

simulation. The hybrid programming models have an

additional synchronization step, in the form of a barrier

primitive prior to the communication phase, which is not

needed in the MPI model. We believe this leads to the slower

run times for the hybrid programming models.

However, our implementation using hybrid programming

models does not take advantage of all threads in the

communication phase. Currently, the worker threads are

waiting without doing work during that phase. Thus, there is

potential to improve the performance. This can be achieved

by either two strategies. Either all worker threads participate

in the communication phase as well, or the worker threads

start the computation of the inner tissue elements in the

subvolume while the master carries out the communication

of border values. Once this has been completed, the reaction-

diffusion equations can be solved for those as well. Hence,

hybrid programming models allow for more sophisticated

program design with regards to interleaving computation and

communication phases.

Also, our implementation the computational load only is

considered during data decomposition. Thus, further

performance improvement can be achieved by more

sophisticated load balance strategies. Nevertheless, our

current implementation of the lightweight multiscale cardiac

model achieves a run time of just over 3.5 minutes for a

1000 ms simulation run.

V. CONCLUSION

This work indicates that a model developer does not have

to add programming complexity by using hybrid

programming models for lightweight multiscale cardiac

models. However, the communication and computation

phases are kept separate, which is a simplification that can be

improved upon. Making use of the computing power of the

worker threads during the communication phase will

certainly increase performance. We believe the performance

advantage of hybrid models will be more apparent on future

HPC systems because they will have many more hardware

threads than current systems.

We acknowledge that more sophisticated and optimized

multiscale cardiac models exist. Bearing that in mind, it is

easily foreseeable that combining our methods and those

models will yield faster than real time simulation run times in

the near future.

ACKNOWLEDGMENT

We would like to thank Fred Mintzer and David Singer for

enabling us to use of the IBM Blue Gene/P supercomputer at

the IBM T. J. Watson Research Laboratory.

REFERENCES

[1] A. Peters, S. Melchionna, E. Kaxiras et al. Multiscale simulation of

cardiovascular flows on the IBM Blue Gene/P: full heart-circulation

system at near red-blood cell resolution, Supercomputing 2010

[2] A. Hosoi, T. Washio, J. Okada et al. A Multi-Scale Heart Simulation

on Massively Parallel Computers, Supercomputing 2010

[3] M. Reumann, B. G. Fitch, A. Rayshubskiy, M. C. Pitman, J. J. Rice,

Orthogonal Recursive Bisection as Data Decomposition Strategy for

Massively Parallel Cardiac Simulations, Biomed Tech 2011; 56:129-

145

[4] B. J. Pope, B. G. Fitch, J. J. Rice, M. Reumann. Performance of

Hybrid Programming Models for Multiscale, Cardiac Simulations:

Preparing for Petascale Computation. IEEE Trans Biomed Eng.

(submitted March 2011)

[5] M. Reumann, B. G. Fitch, A. Rayshubskiy et al. Strong scaling and

speedup to 16,384 processors in cardiac electro-mechanical

simulations, 31st Annual International IEEE EMBS Conference

Minneapolis, MN, USA, September 2-6, 2009

[6] M. Potse, B. Dube, J. Richer, A. Vinet and R. M. Gulrajani. A

Comparison of Monodomain and Bidomain Reaction-Diffusion

Models for Action Potential Propagation in the Human Heart, IEEE

Trans Biomed Eng. 2006;53(12):2425-2435

[7] R. FitzHugh: Impulses and physiological states in theoretical models

of nerve membrane. Biophysical Journal 1961, 1:445-466.

[8] J. Sundnes, G. T. Lines, X. Cai et al.. Computing the Electrical

Activity in the Heart. Berlin Heidelberg: Springer Verlag; 2006.

436

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

