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Abstract— The presence of connective tissue as well as inter-
stitial clefts forms a natural barrier to the electrical propagation
in the heart. At a microscopic scale, such uncoupling structures
change the pattern of the electrical conduction from uniform
towards complex and may play a role in the genesis of cardiac
arrhythmias. The anatomical diversity of conduction structures
and their topology at a microscopic size scale is overwhelm-
ing for experimental techniques. Mathematical models have
been often employed to study the behavior of the electrical
propagation at a sub-cellular level. However, very fine and
computationally expensive meshes are required to capture all
microscopic details found in the cardiac tissue. In this work,
we present a numerical technique based on the finite element
method which allows to reproduce the effects of microscopic
conduction barriers caused by the presence of uncoupling
structures without actually resolving these structures in a
high resolution mesh, thereby reducing the computational costs
significantly.

I. INTRODUCTION

Although cardiac tissue is often considered to be a func-
tional syncytium at a macroscopic size scale, this is not the
case at a microscopic size scale, where tissue is made up of
discrete cells. Cells are interconnected via gap junctions to
facilitate current flow among adjacent cells where coupling is
a function of direction, with significantly more gap junctions
at the intercalated discs, i.e. the terminal endings of a
myocyte along the long axis of the cell, than along the lateral
border of a myocyte. The discreteness of the intracellular ma-
trix is reflected in the discontinuous nature of impulse propa-
gation at the microscopic size scale which was demonstrated
in numerous studies, both with experimental [1], [2] as well
as modeling work [3], [4], [5]. Discontinuous propagation
is omnipresent in the heart, even in perfectly healthy tissue,
however, at the organ scale discontinuous effects secondary
to gap junction coupling are likely to be of lesser relevance,
when considering the global dynamics of phenomena such
as activation and repolarization sequences or the formation
of arrhythmias. However, pathological remodeling processes
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may lead to a reduction in the number of viable gap junctions
or in their phosphorylation state, or to an expansion of
interstitial cleft spaces which prevents gap junctions from
maintaining functional links with adjacent cells. Such an
increase in cleft spaces manifests itself in more pronounced
discontinuities in propagation. While cell-to-cell propagation
mediated via gap junctions leads to very small delays of some
tens of µs and zig-zag propagation patterns at the size scale
of some tens of µm, conduction delays due to increased
cleft spaces, depending on the severity of remodeling, may
be orders of magnitude longer, at the size scale of a few
milliseconds, with zig-zag pathways at the order of a few
millimeters [5].

In agreement with the syncytial idea, computational mod-
els of cardiac electrophysiology at the tissue and organ scale
represent the myocardium as a continuum where discon-
tinuities at the microscopic size scale are fully ignored.
Most modeling approaches rely on a homogenization pro-
cedure [6] where tissue properties are averaged over an
ensemble of cells. Spatial discretization is then governed
purely by accuracy constraints imposed by the biophysics
of a propagating depolarization wavefront, but not by the
discrete geometries of myocytes. Such macros-scale con-
tinuum approaches are employed to simulate tissue and
organ scale phenomena where rather coarse discretizations
are preferred to keep the computational load manageable.
Therefore any structural discontinuities which are below the
chosen spatial resolution of a model remain unaccounted
for. Although it is feasible to discretize a whole heart at
a paracellular resolution which would allow to explicitly
account for fine-scale discontinuities, computational costs
may be prohibitive, even when using the most powerful high
performance computing facilities available today.

In this study we propose a novel finite element (FE)
approach which allows to account for fine-scale structural
discontinuities without increasing the spatial resolution to
explicitly resolve these structures. Instead, coarser discretiza-
tions are used to resolve the macro-structure of the tissue,
and finer uncoupling structures which are below the chosen
spatial discretization, are projected conformally onto the
mesh. Infinitely thin layers of electrical isolation are then
enforced along the conformal projections, thus reproducing
the barrier effect caused by the structural discontinuities. The
feasibility of the approach is demonstrated in simulations of
impulse propagation in two-dimensional sheets of cardiac
tissue which were derived from high resolution images of
histological images.
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II. METHODS

In this study we developed a computationally efficient FE
formulation for solving the monodomain equations, which is
suited for studying discontinuities in impulse propagation at
a microscopic size scale. The general idea of the method is to
represent microscopic barriers found in the cardiac tissue by
infinitely thin insulating lines in the FE mesh. These insulat-
ing lines are computed based on high resolution histological
images of cardiac tissue, like shown in Fig. 1, and projected
onto a coarse mesh by decoupling some of its elements.
The decoupling is done via renumbering of nodes shared
among adjacent elements along an insulating line, i.e. a node
has unique spatial coordinates, but its numbering may differ
among neighboring elements. An important aspect of this
approach is that the no-flux conditions assumed at the tissue
boundaries is implicitly satisfied by the FE formulation. The
propagation delay due to the presence of such infinitely thin
insulating lines is very similar to the barrier effect caused by
the presence of microscopic discontinuous structures, such as
interstitial clefts and connective tissue in the cardiac tissue.

A. Governing Equations

The dynamics of the processes that underlie the action
potential (AP) in a cardiac cell are typically described
by a set of ordinary differential equations describing the
transmembrane current Im:

Im = Cm
∂Vm

∂ t
+ Iion (Vm,η)− Istim (1)

dη

dt
= f (t,η) (2)

where Cm is the membrane capacitance, Vm is the potential
across the cell membrane, Iion is the density of the total ionic
current flowing through the membrane channels, pumps and
exchangers, which in turn depends on Vm and on a set of state
variables, η , and Istim is a stimulus current. In this study the
cell model presented in [7] is used to simulate the AP of
mammalian ventricular myocytes.

In cardiac tissue, the spread of excitation wave can be
described by the monodomain formulation:

∇ · (σ∇Vm) = β Im, (3)

where σ is the conductivity tensor with the eigenaxis σl and
σt along and transverse to the preferred axes of the tissue,
respectively, and β is the homogenized membrane surface-
to-volume ratio.

B. Image Processing

A histological slice from the rabbit ventricle was taken
post-experimentum, colored using Masson’s trichrome stain-
ing (see Fig. 1) and imaged at high resolution (1000 by 1000
pixels, where each pixel has 12.7µm).

The digitized image was segmented using color clustering
and thresholding techniques to distinguish myocardium (red)
from connective tissue (blue) and intercellular clefts (white).
In order to keep the simulations tractable, only a portion
of the histological image, the squared region delineated in

Fig. 1. High resolution histological image of a tissue slice from the rabbit
ventricle. The staining (Masson’s trichrome) resulted in a coloring of cardiac
cells (red), connective tissue (blue) and interstitial cleft spaces (white). The
region marked by a red square was used for mesh generation.

Fig. 1, was used to construct the FE meshes in this work
(See Fig. 2-A).

Fig. 2. (A) Selected section of the high resolution histological image used
to built the FE meshes. (B) Results obtained after segmentation of the high
resolution image. (C) Segmented image obtained with a reduced resolution.
(D) Skeleton computed according to the high resolution segmented image.

The high resolution segmented image shown in Fig. 2-
B was subsequently downsampled to (200 by 200 pixels)
as can be seen in Fig. 2-C. Note that this reduction in
resolution caused a significant loss of information, where
all smaller isolating structures present in the high resolution
image disappeared. To recover information on morphology
and topology of the microstructure, a skeletonization algo-
rithm [8] was applied to the high resolution segmented image
to extract the lost information and store it as a skeleton
of thin lines. Fig. 2-D presents the results obtained with
skeletonization process. Note that the microstructures visible
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in the high resolution image are now represented as thin
lines, except for very small ones which were not accounted
for during the skeletonization process (their morphometric
features were below a predefined threshold of the number of
connected pixels).

C. Mesh Generation

The FE meshes used in this work were generated directly
from the segmented histological images [9]. In the process,
each pixel segmented as a myocyte was meshed as a two-
dimensional quadrilateral element whereas pixels segmented
as uncoupling structures (clefts or connective tissue) were not
represented in the mesh. In total, three FE meshes of equal
size but different resolutions were generated: a reference fine
mesh based on the segmentation of the high resolution image
(Fig. 2-B), where all microstructural details were retained;
and other two coarser meshes based on the lower resolution
segmented image shown in Fig. 2-C, where only major
uncoupling structures were kept.

The fine and one of the coarse meshes were used as they
are to simulate excitation spread in the tissue, whereas an
additional processing step was required for the remaining
coarse mesh. First, the skeleton extracted at the image
processing stage (See Fig. 2-D) was projected onto the coarse
mesh. For this sake, the skeleton, defined as a set of edges
where each edge is spanned by two nodes, was translated
into coordinates which map onto the same space as the coarse
FE mesh. Then, the coordinate points describing the skeleton
served as input to the algorithm described in Fig. 3. The goal
of the algorithm is to decide which nodes of the coarse mesh
should be renumbered in order to reproduce the barrier effect
caused by the presence of clefts and connective tissue in the
cardiac tissue.

The first step of the algorithm consists of selecting a
coordinate point of the skeleton and map it onto the coarse
mesh in order to find in which element this point is located.
The next step is to verify if this point represents a barrier
between this element and the neighboring elements. To do so,
the algorithm checks if this point intersects one of the faces
of this element. If there is an intersection, the closest node to
this point is selected to be renumbered in the mesh according
to a few conditions that have to be met to guarantee the
consistency of the mesh. The output of the algorithm is a
list of nodes to be renumbered in the mesh. This list is used
then either to directly renumber a mesh, or more elegantly,
to be fed into the simulator where nodes are renumbered on
the fly, leaving the original mesh untouched.

D. Computer Simulation Protocols

Computer simulations of the excitation spread in a 2D
sheet of tissue were performed using the Cardiac Arrhythmia
Research Package (CARP) [10] using a single core of an
AMD Opteron(tm) 2.2 GHz dual-core processor and 8,GB
of RAM running a 64-bit openSUSE Linux system. The
orientation of myocyte axes in the intracellular domain, as
identified in the segmentation procedure, were considered
aligned with the x−axis. Wavefront propagation was initiated

Fig. 3. Schematic representation of the renumbering algorithm to discon-
nect nodes of a FE mesh.

by delivering a transmembrane stimulus at the top right
corner of the sheet. Three different setups were used: a
fine mesh, consisting of 1000 × 1000 quadrilateral elements
with an edge length of 10 µm capturing all microstructural
details found in the histological image; a coarser mesh,
consisting of 200 × 200 quadrilateral elements with an edge
length of 50 µm, where only major structures resolved at a
lower resolution (see Fig. 2-B); and finally, the same coarse
grid was used, but employing the renumbering technique to
enforce no-flux boundaries along the infinitely thin insulating
lines obtained by the skeletonization process.

III. RESULTS

Fig. 4 shows the simulation results obtained with the three
different FE meshes at three different time instants. Fig. 4-
A shows simulations based on the fine mesh, particularly
in the middle panel, significant wavefront fractionation ap-
pears as a consequence of the presence of microstructural
discontinuities. In contrast, much smoother wavefronts are
observed with the coarse mesh due to the absence of the
fine structural discontinuities. Only around larger structures
some fractionation appeared (Fig. 4-B). Finally, using the
same coarse mesh, but using the discontinuous FE technique,
both the global activation sequence as well as details of the
wavefront morphology appear to be very similar to the results
obtained with the fine mesh (see Fig. 4-C).

Moreover, the computational load is significantly reduced.
The simulation using the coarse mesh shown in Fig. 4-
C lasted about 4 min, while the simulation using the fine
mesh took about 290 min to complete. Thus, the proposed
technique could reduce the overall execution time by a factor
of ∼ 70 over the fine setup while capturing all subtle effects
of small discontinuous structures on wavefront fractionation.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this work we proposed a new numerical technique
based on the FE method which allows to represent the
discontinuous effects of uncoupling structures on wavefront
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Fig. 4. Spatial distribution of the transmembrane potential Vm in all three
models at three different time instants (from top to bottom) after the stimulus
onset. Results obtained with (A) the fine mesh, (B) the coarse mesh, and
(C) applying the discontinuous FE formulation to the coarse mesh.

propagation in cardiac tissue on a coarse mesh, without the
need to use high resolution meshes to explicitly resolve
these structures. The presented results clearly demonstrate
the potential of the proposed technique. Using this technique,
both the overall activation sequence as well as subtle details
of wavefront fractionation matched very well with results
obtained with the high resolution grid. In addition to that,
execution times were reduced significantly, by about a factor
of 70, as compared to simulations performed with full spatial
resolution.

B. Future Works

In this study the basic principle of the FE approach was
shown to represent the effects of fine-scale discontinuous
structures on wavefront propagation. In the future this basic
concept has to be extended in three ways to be of more
general utility: first, in the context of bidomain simulations
an additional complexity arises, stemming from the fact that
discontinuities exist only in the intracellular space, but not
the interstitial space. Consequently, the nodal renumbering
approach has to be employed only to the intracellular grid,
but not the extracellular/interstitial grid. Therefore, around
renumbered nodes there is no one to one relationship between
nodal points belonging to intracellular and extracellular grid,
requiring a more elaborate procedure when assembling the
right hand side of the elliptic portion of the bidomain
equations. Secondly, although results were demonstrated in
a two-dimensional tissue sheet, the basic concept extends
straight forwardly to three dimensions, albeit the preprocess-
ing stages, mainly skeletonization, projections of the skeleton
onto a 3D grid, and identifying the nodes for renumbering is
more challenging. Further, to allow smoother representations
of structural discontinuities, the information on skeleton

topology may be used for generating unstructured meshes
where meshes are spatially refined in the vicinity of the
uncoupling structures. Finally, nodal pairs which arose in the
process of renumbering may be reconnected to simulate the
effect of non-myocytes such as fibroblasts [11] which may
be expressed in cleft regions which are filled with connective
tissue. This is equivalent to modeling the effect of very thin
layers of fibroblast in a three dimensional myocardium.
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