33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

TumorML: Concept and Requirements of an In Silico Cancer
Modelling Markup Language

David Johnson, Jonathan Cooper and Steve McKeever

Abstract— This paper describes the initial groundwork car-
ried out as part of the European Commission funded Transat-
lantic Tumor Model Repositories project, to develop a new
markup language for computational cancer modelling, Tu-
morML. In this paper we describe the motivations for such
a language, arguing that current state-of-the-art biomodelling
languages are not suited to the cancer modelling domain. We
go on to describe the work that needs to be done to develop
TumorML, the conceptual design, and a description of what
existing markup languages will be used to compose the language
specification.

I. INTRODUCTION

The European Commission funded Transatlantic Tumor
Model Repositories project (TUMOR) aims to develop a
European clinically oriented digital model repository for
cancer models. The repository will store models provided
by other European VPH projects, in particular the Advancing
Clinico Genomic Trials on Cancer (ACGT) [1] and the Clin-
ically Oriented Translational Cancer Multilevel Modelling
(ContraCancrum) [2] projects. One of the aims of TUMOR
is to design the digital repository to interoperate with its
counterpart repository in the United States, developed by
the Center for the Development of a Virtual Tumor project
(CViT) [3], led by the Massachusetts General Hospital in
Boston. A major task within TUMOR, and the topic of
this paper, is to develop a markup language for the cancer
modelling domain.

A. Motivation

We have previously discussed the motivations for mod-
elling markup [4]. Firstly we want to describe the implemen-
tation of these cancer models in an abstract manner that is not
tied to any particular programming notation, and secondly we
want to be able to couple our models. To our knowledge, this
kind of work has not been undertaken in the context of cancer
modelling, which has led to a diverse landscape of cancer
models, most of which cannot easily be used by different

This work was supported in part by the European Commission under
the Transatlantic Tumor Model Repositories project (#FP7-ICT-2009.5.4-
247754). The authors would also like to thank the participating institutions
of the project consortium and its members.

David Johnson is with the Department of Computer Science, Univer-
sity of Oxford, Wolfson Building, Oxford, OX1 3QD, United Kingdom.
david.johnson@cs.ox.ac.uk

Jonathan Cooper is with the Department of Computer Science, Univer-
sity of Oxford, Wolfson Building, Oxford, OX1 3QD, United Kingdom.
jonathan.cooper@cs.ox.ac.uk

Steve McKeever is with the Department of Computer Science, Univer-
sity of Oxford, Wolfson Building, Oxford, OX1 3QD, United Kingdom.
steve.mckeever@cs.ox.ac.uk

978-1-4244-4122-8/11/$26.00 ©2011 IEEE

441

research groups. The development of a markup language for
cancer models will enable the provision of two features.

First, by providing an expressive metadata vocabulary
researchers will be able to curate their models appropriately
and publish them to an audience of research peers and
clinicians wishing to trial published models. To demonstrate
this, models taken from ACGT and ContraCancrum will be
published directly to the European repository by wrapping
the computational components (as source code and/or exe-
cutable binaries) in the newly developed markup language.
Through Web services developed as part of the European
repository’s infrastructure, CViT models will be imported
into the European repository where the US model metadata
will be appropriately translated for storage by TUMOR
services.

Second, markup will be developed to describe abstract
interfaces to the computational execution of the models.
These abstractions will be mapped to the appropriate bio-
logical entities that could be used to enable model coupling.
To demonstrate this feature, an integrated, interoperable
workflow environment will, through automatic interpretation
of the model markup, provide functionality to couple models
using a graphical workflow tool. The tool will allow execu-
tion of the aggregate model as a workflow. As an exemplar
for the ‘transatlantic’ aim of the project, a model taken
from CViT will be coupled with one provided by ACGT
or ContraCancrum.

Digital repositories for computational models are not
novel, as demonstrated by a number of model reposito-
ries including E-Cell (www.e-cell.org), the CellML (mod-
els.cellml.org) and FieldML (models.fieldml.org) reposito-
ries, BioModels (www.ebi.ac.uk/biomodels/) and the CViT
Digital Model Repository (www.cvit.org). However most of
the aforementioned repositories store models covering a wide
range of biological phenomenon. TUMOR will provide a
dedicated cancer model repository for European and inter-
national researchers.

B. Related Work

Existing markup languages for modelling biological phe-
nomena include the Systems Biology Markup Language
(SBML) [5], CelIML [6], developed out of the cardiac mod-
elling community, FieldML [7], a markup language primarily
for modelling physiological structures and their physics, and
the In Silico Markup Language (ISML) [8] developed by the
Japanese Physiome project.

SBML is developed for the realm of systems biology—
a broad ranging domain, but nonetheless a specific kind of

modelling for molecular scale processes, and hence applica-
ble only to a subset of the models considered in TUMOR
(i.e. ACGT and ContraCancrum provide macroscopic ‘top-
down’ models, while CViT will provide molecular/micro-
scopic ‘bottom-up’ models). CellML and ISML take a more
generic approach and are not specifically constrained to a
particular domain, although CellML was developed primarily
to describe biological cell function. Both are however limited
in the kinds of models they can represent. FieldML is still in
development and is not yet widely adopted, and for the most
part models physiological structures and their function. None
of these modelling languages satisfies the needs and diversity
found in cancer modelling. One other feature that is prevalent
throughout is that these state-of-the-art modelling languages
are designed to mainly simulate through pure mathematical
description. Each language being based on MathML restricts
their expressivity in modelling, especially where an in silico
approach needs more algorithmic descriptions, for example
in agent-based models.

II. THE TUMOR MARKUP LANGUAGE

To address the specific domain of cancer modelling, we
propose the development of a markup language, TumorML,
to describe computational cancer models within TUMOR.
The motivation for such a markup language is two-fold:
To describe the implementation of these cancer models
in an abstract manner that is not tied to any particular
programming notation, and to be able to couple our models
to address transatlantic scenarios such as fusing one taken
from CViT with one from ACGT or ContraCancrum.

The challenges posed in developing TumorML include
formalising cancer terminology, linking biological entities
with computational and mathematical elements of models,
and incorporating features to allow for curating models in
online repositories. Paired with ontologies of how entities of
cancer biology are related and interact, and by using standard
terminology dictionaries, for example the ACGT Master
Ontology [13] and the National Cancer Institute Thesaurus
[14], we may be able to package models with metadata
that automates coupling different cancer models together,
irrespective of scale and source. Linking different models
together can produce more accurate compound models, par-
ticularly when considering models operating from different
scales.

A. Conceptual Design

Conceptually, the design of TumorML will take a similar
approach to that of CellML and ISML in how models are
structured to allow modularisation and connectivity between
components. In the case of TumorML however, we propose
to reuse the Job Submission Description Language (JSDL)
vocabulary, an open standard for describing computational
job executions, since we initially target models published
as pre-complied model binaries, or source-code implementa-
tions that can be compiled on-the-fly. This means there are
two key levels of abstraction when publishing a model: (1) A
computational description of the model implementation and

(2) The biological description of the model function encoded
in the aforementioned implementation.

An essential part of enabling model execution and work-
flow composition will require description of the computa-
tional requirements to run the models. Each of ACGT, Con-
traCancrum, and CViT, provide models as source code and
binary executable files rather than more abstract representa-
tions of the model functionality. JSDL provides markup that
can describe the hardware and software requirements of a
binary executable. It also allows the specification of standard
inputs, outputs, data staging, and execution parameters.

Once the input and output parameters are defined at a
computational level, these will be mapped to entities from
cancer biology. This will allow us to perform type checking
and units conversion where necessary when presented with
input data, and additionally support semantic checks of the
biological parameters to ensure scientific correctness when
connecting multiple models together. Directly connecting the
computational parameters between models would not serve
to validate any semantic connectivity, as raw parameters do
not have any semantic metadata attached to them by default.

We distinguish two classes of model descriptions: Simple
and Complex. Simple Model Descriptions are used as the
initial step in wrapping up a computational cancer model. It
refers to a single implementation, uploaded to the repository
as a binary or as source code. An interface mapping bridges
the computational interface (as command-line parameter lists
or input files) with standardised biological entities (i.e. a bio-
parameter interface). Models are also curated with standard
metadata to enable efficient search and management of mod-
els. By making the interface to the models domain-specific,
researchers and clinicians will more easily understand how
to run the models and how to couple them with other models
where necessary.

Complex Model Descriptions provide similar functionality
to Simple Model Descriptions in that they are curatable with
the same metadata, and also provide a bio-parameter inter-
face. The main difference is that they describe a compound
model, and so a single implementation is not referenced.
Rather, a graph of references to other models describes the
internal functionality of the complex model. These references
may refer to any other kinds of Simple or Complex Model
Descriptions, and the edges of the graphs connect through
each referenced model’s bio-parameter interface. The inter-
face of the model at hand is then composed of the remaining
unconnected interface components, reflecting what inputs are
needed and what outputs the compound model writes.

Distinguishing between Simple and Complex models is
important because Complex models aggregate Simple mod-
els, and as such present an interface based on the set of
encapsulated Simple models. A Complex model therefore
links to the metadata of its component models, while Sim-
ple models do not as they do not refer to any additional
components.

442

B. Markup for Digital Curation

Like SBML, CellML, FieldML, and ISML, TumorML
will utilise existing vocabularies such as Dublin Core for
document curation, or MathML for providing validated math-
ematical content where possible. Where existing vocabularies
do not exist we will specify our own cancer-specific metadata
descriptions. Clinically oriented vocabularies and ontologies
could also be integrated to assist in the management of
clinical trials of TumorML models. The CViT Digital Model
Repository’s current approach is to provide the model pub-
lisher with free text fields describing Hypothesis, Descrip-
tion, Conclusion, etc. This has the advantage of being easier
to enter, but may make it more difficult for the end-user
to locate relevant information (or for a computer program
to utilize the information). For TumorML, we aim to incor-
porate the Dublin Core Metadata Element Set, a metadata
vocabulary for annotating generic electronic resources, along
with a set of domain-specific elements describing various
features of cancer models. These would include elements
describing the type of cancer modelled, the type of mathe-
matics used in the model, what scale the model operates at,
and whether any treatment scheme is incorporated into the
model. Listing 1 illustrates an example of using RDF and
Dublin Core to annotate a module modelling an epidermal
growth factor receptor (EGFR) pathway.

Listi E le of ial ine Dublin C

<rdf:RDF
xmlns:rdf="http: //www.w3.0rg/1999/02/22 — rdf —syntax—ns#”
xmlns:de="http: //purl.org/dc/elements/1.1/™>
<rdf:Description rdf:about="http: //tumor.eu/dataservice ?model_id=22">
<dc:creator>David Johnson</dc:creator>
<dc:title>EGFR pathway module</dc:title>
<dc:description>An example module from the CViT team of an implementation
of an EGFR pathway .</dc:description>
<dc:date>2010—09—05</ dc:date>
</rdf:Description>
</rdf:RDFE>

At this early stage in the markup design, these proposed
metadata details will be used to get a first prototype of the
European repository functional. As many of these fields refer
to specific entities in biology, we believe that utilising a
standard dictionary of terms, such as those described above,
would allow greater interoperability with outside repositories
by being able to map terminology between different systems.
In addition to this, where standard units are used to describe
certain biological entities or properties, we will be able to
check and automatically convert units where necessary.

C. Markup for Interfacing with Models

We will also develop metadata for describing the public
interfaces with existing models that have been developed
and published as source code and executable files. This
will allow us to fuse models together through their exposed
parametric inputs and outputs. This ‘black box’ approach
to computational model execution and coupling will utilise
parametric interfaces described using markup, by specifying
the underlying computational requirements for executing
models as metadata. The computational interfaces could then
be mapped to biological terminology ultimately providing
a way to validate the cancer biology more easily through

correct semantic matching, and also providing a means to
enforce type and units checking.

These interfaces will be described using JSDL, which will
facilitate the specification of the underlying computational
requirements for executing cancer models uploaded to the
European repository. An example of how JSDL can be used
to describe an executable model is shown in Listing 2. In
this example, a model executable corresponding to running
a simulation of a brain tumour (Glioblastoma multiforme)
is described, with as inputs a magnetic resonance imaging
(MRI) scan of the initial tumour and one parameter describ-
ing the fractional cell kill ratio applied to the simulation.

<jsdl:Application>
<jsdl:POSIXApplication>
<jsdl—posix:Executable>GlioblastomaModel</jsdl—posix:Executable>
<jsdl—posix:Argument>inputMRI.raw</jsdl—posix:Argument>
<jsdl—posix:Argument>CellKillRatio</jsdl —posix:Argument>
</jsdl—posix:POSIXApplication>
</jsdl:Application>

We might annotate each argument to incorporate entity
references and links to external publications or other in-
formation on the parameters to give them more semantic
meaning. Listing 3 illustrates how one might annotate the
input parameters of the model executable described in Listing
2. The entity annotations depicted each provide a type
identifier that may be looked up against an ontology to
determine the appropriate units and biological type, and a
reference that is unique within the model context. Such
an entity reference could be used externally to refer to
specific parameters by a name or identifier rather than by the
position of the argument in the list of inputs. The 1inkOut
annotations illustrate how to refer to external resources,
perhaps looked up as a URL (for Web links) or a DOI (for
published works such as journal papers). In this example,
the mridata parameter links out to the Wikipedia entry
about MRI, and the cellKillRatio parameter links to
a journal publication on the use of the cell kill ratio in a
clinical cancer model [9].

: .

<jsdl—posix:Argument>
<meta>
<entity id="MRI.1” ref="mridata”/>
<linkOut url="http://en.wikipedia.org/wiki/Magnetic_resonance.imaging”/>
</meta>
inputMRI.raw
</jsdl—posix:Argument>
<jsdl—posix:Argument>
<meta>

<entity id="CKR.1" ref="cellKillRatio”/>
<linkOut doi="10.1371/journal.pone.0017594" />
</meta>

CellKillRatio
</jsdl—posix:Argument>

D. Markup for Fusing Models

As described previously, connecting models together will
be paramount to investigate combining approaches and de-
veloping more accurate models through such composition.
Where models are published as computational applications,
as we envisage within the scope of the TUMOR project
and as provided by the TUMOR model repository, linking
models together essentially equates to workflow composition.

443

Building workflows of computational applications is not
novel and has been demonstrated by a number of well-known
workflow systems such as the UK myGrid project’s Taverna
software [10] and the US Kepler project [11]. Taverna utilises
the XML Simple Conceptual Unified Flow Language (XS-
cufl) [12] for workflow descriptions; however, we will also
investigate the use of Business Process Execution Language
(BPEL) [15] as a possible choice of markup for workflows.
This is because the ACGT project developed a workflow-
authoring tool [16] that could potentially be used as the
basis for model composition in TUMOR within the workflow
environment to be developed as part of the model repository.

The basic idea behind any workflow composition is to
build a graph of dependencies between computational mod-
ules. As we plan to investigate mapping JSDL parametric in-
terfaces to biological entities, model composition within the
TUMOR environment would link these bio-computational
interfaces together. We envisage that the when the compu-
tational parameters are linked between models during the
composition process, semantic validation, including type and
units checking, will be carried out where the user will be
given warnings on-the-fly. This would allow users to create
compound models with immediate edit-time feedback, and
thus reduce the likelihood of errors and execution problems
that would arise at run-time.

III. CONCLUSIONS AND FUTURE WORK
A. Conclusions

Although there are many markup languages that could
be incorporated into a TUMOR-specific language, we limit
the scope of the proposed new cancer modelling language,
TumorML, to three key functions: curating cancer models,
computationally interfacing with cancer models, and con-
necting cancer models together. We propose to use Dublin
Core along with cancer domain-specific metadata for model
curation. We propose to use JSDL as the primary interface
with published model implementations (as executable files)
and map the computational interfaces with cancer domain-
specific terminology and ontologies to aid in type and units
checking. Finally, we propose to use a workflow markup
language such as BPEL to enable the fusion of models,
connecting their interfaces to form graph-like structures
representing compound multiscale cancer models.

B. Future Work

Apart from a high-level schema design and specification
for TumorML, during the next stage of development we aim
to develop a set of XML software applications and support
tools. These will include:

e An XML schema to allow TumorML documents to be
validated against the markup specification.

o XSLT stylesheets to extract metadata relating to specific
vocabularies (e.g. curation metadata, model interfaces,
computational requirements, etc.).

o Programming APIs to assist the use of TumorML in
software, in particular with the European model repos-
itory (e.g. in PHP, JavaScript).

o A graphical authoring tool for users not familiar with
programming languages or raw XML authoring.

o Documentation, including technical specifications, tuto-
rials, examples.

Progress on the development of TumorML will be pub-
lished on the TUMOR website (www.tumor-project.eu) as
will the markup specifications, schemas, tools, and doc-
umentation, and the authors openly welcome constructive
contribution from the cancer modelling community.

IV. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the contribution of the
European Commission and the TUMOR project consortium.

REFERENCES

[1] M. Tsiknakis et al., Semantic Grid Infrastructure Enabling Integrated
Access and Analysis of Multilevel Biomedical Data in Support of
Postgenomic Clinical Trials on Cancer, [EEE Trans. Inf. Technol.
Biomed., vol. 12, no. 2, March 2008, pp. 205-217.

[2] K. Marias et al, Contra Cancrum Website.
www.contracancrum.eu [March 25, 2010].

[3] T.S. Deisboeck et al., Advancing Cancer Systems Biology: Introducing
the Center for the Development of a Virtual Tumor, CViT, Cancer
Informatics, vol. 5, March 2007, pp. 1-8.

[4] D. Johnson, et al., Markup Languages for In Silico Oncology, in Proc.
4th Int. Adv. Res. Workshop on In Silico Oncology and Cancer Inves-
tigation (4th IARWISOCI) The ContraCancrum Workshop, Athens,
Greece, 2010, pp. 108-110.

[5] M. Hucka et al., Evolving a Lingua Franca and Associated Software
Infrastructure for Computational Systems Biology: The Systems Biol-
ogy Markup Language (SBML) Project, Systems Biology, vol. 1, no.
1, June 2004, pp. 41-53.

[6] C.M.Lloyd et al., CellML: its future, present and past, Progress in
Biophysics and Molecular Biology, vol. 85, 2004, pp. 433-450.

[71 G. Richard Christie et al., FieldML: Concepts and Implementation,
Philosophical Transactions of the Royal Society A., vol. 367, no. 1895,
May 2009, pp. 1869-1884.

[8] Y. Asai et al., Specifications of insilicoML 1.0 : A Multilevel Biophys-
ical Model Description Language. Journal of Physiological Sciences,
vol. 58, no. 7, December 2008, pp. 447-458.

[9] G.S. Stamatakos et al., Exploiting Clinical Trial Data Drastically
Narrows the Window of Possible Solutions to the Problem of Clinical
Adaptation of a Multiscale Cancer Model, PLoS ONE, vol. 6, no. 3,
2011.

[10] T. Oinn et al., Taverna: a tool for the composition and enactment
of bioinformatics workflows, in Bioinformatics, vol. 20, no. 17, Jun.
2004, pp. 3045-3054.

[11] 1. Altintas et al., Kepler: An Extensible System for Design and
Execution of Scientific Workflows, in Proc. 16th Conf. Scientific and
Statistical Database Manage., Santorini, Greece, 2004, pp. 423-424.

[12] T. Oinn (2004, Apr. 7), XScufl Language Reference. Internet:
Available: www.ebi.ac.uk/tmo/mygrid/XScuflSpecification.html [Oc-
tober 14, 2009].

[13] M. Brochhausen et al., The ACGT Master Ontology on Cancer A
New Terminology Source for Oncological Practice, in Proc. 21st
IEEE Int. Symp. Computer-Based Medical Systems, 2008 (CBMS ’08),
Jyvaskyla, Finland, 2008, pp.324-329.

[14] N. Sioutos et al., NCI Thesaurus: a semantic model integrating cancer-
related clinical and molecular information, Journal of Biomedical
Informatics, n0.40, 2007, pp. 30-43.

[15] T. Andrews et al., Business process execution language for web
services version 1.1 (Technical report), May, 2003.

[16] S. Sfakianakis et al., Web-Based Authoring and Secure Enactment of
Bioinformatics Workflows, in Workshops at the Grid and Pervasive
Computing Conference, 2009 (GPC ’09), Geneva, Switzerland, 2009,
pp. 88-95.

Internet:

444

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

