
  

 

Abstract—An automated gait classification method is 

developed in this study, which can be applied to analysis and to 

classify pathological gait patterns using 3D ground reaction 

force (GRFs) data. The study involved the discrimination of 

gait patterns of healthy, cerebral palsy (CP) and multiple 

sclerosis subjects. The acquired 3D GRFs data were 

categorized into three groups. Two different algorithms were 

used to extract the gait features; the GRFs parameters and the 

discrete wavelet transform (DWT), respectively. Nearest 

neighbor classifier (NNC) and artificial neural networks (ANN) 

were also investigated for the classification of gait features in 

this study. Furthermore, different feature sets were formed 

using a combination of the 3D GRFs components (mediolateral, 

anterioposterior, and vertical) and their various impacts on the 

acquired results were evaluated. The best leave-one-out (LOO) 

classification accuracy 85% was achieved. The results showed 

some improvement through the application of a features 

selection algorithm based on M-shaped value of vertical force 

and the statistical test ANOVA of mediolateral and 

anterioposterior forces. The optimal feature set of six features 

enhanced the accuracy to 95%. This work can provide an 

automated gait classification tool that may be useful to the 

clinician in the diagnosis and identification of pathological gait 

impairments. 

I. INTRODUCTION 

AIT analysis has become a crucial assessment tool in 

clinics and hospitals. It provides new insights to help 

understand various human movement patterns corresponding 

to different gait pathology. The traditional gait assessment 

methods are based on clinical observations. However, it has 

the drawbacks of being qualitative, whereby decisions were 

based on the subjective judgment of clinicians, and also on 

time-consuming processes. Current work in gait analysis 

intends to develop an automated gait assessment tool to 
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manipulate the massive kinetic and kinematic gait data in a 

real-time and provide an objective decision. Hence, the gait 

classification tool may assist clinicians in diagnosis and in 

identification of pathological gait impairments. 

Several studies have investigated different techniques for 

the representation and classification of data for the analysis 

of gait. Such techniques include: statistical analysis, 

mathematically transforms, and machine learning classifiers, 

e.g. support vector machines (SVM), nearest neighbor 

classifier (NNC), and artificial neural networks (ANN). The 

statistical methods are the most widely applied and 

understood for gait analysis. The most common adopted 

methods to represent kinetic data (dynamic data) in gait are 

the statistical methods [1] - [5]. This technique was 

performed in which the representative features were selected 

based on the peak levels of the GRFs and their 

corresponding time of occurrence. This approach has the 

benefit of selecting the most significant data points and 

hence reducing the massive data extracted from the gait 

kinetics (dynamics) in 3D. However, this approach is 

sensitive to noise and it is under the consideration that all 

subjects’ data within the same class exhibit similar patterns 

and have similar features. Other studies investigated the 

mathematically transforms such as Fast Fourier Transform 

(FFT) and Discrete Wavelet Transform (DWT) [6] - [8]. In 

these methods, the transforms compute approximation 

coefficients that are used as feature vectors to represent gait 

data. This leads to massive data reduction without the need 

to a selection process of specific data points. Several 

machine learning classifiers were investigated for the 

automatic recognition of gait patterns including: SVM [1], 

[9], and [2]; NNC [6] and [10]; ANN [7], and [11] - [13]. 

The existing techniques used for gait data have been 

evaluated in several reviews [14] - [18]. Preece et al. [18] 

investigated the different classification algorithms which 

have been used to classify normal activities to identify falls 

from body-worn sensor data. Although, a few investigated 

comparisons between different techniques suggested that 

ANN may give the highest classification accuracy, the 

differences are often small. SVM have shown promise in 

small pilot studies but have yet to be tested in large scale 

studies. Furthermore, recent work in combining different 

classifiers has been examined in the review. It has been 

found that the performance was improved by combining the 

output of different classifiers. ANN was found to be the 

most prevalent non-traditional methodology for gait analysis 
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recently [14], and [16]. However, the performance of ANN 

depends on internal learning parameters, weights and biases, 

which are difficult to interpret. Dobson et al. [17] presented 

a systematic review examining 18 studies for gait 

classification in children with cerebral palsy (CP). Half of 

the studies used qualitative pattern recognition method, 

whereas the remaining studies used quantitative method 

based on cluster analysis techniques. The study found that 

most classifications were constructed using only sagittal plan 

gait data, only one study used gait data in all three plans, 

which may limit classifications validity and restrict the 

applications.  

Although, many techniques have been investigated for 

gait classification, the fact that different gait pathologies 

have different gait patterns imposes that more investigation 

and work are necessary in this field. The aim of this study is 

to develop an automated gait classification tool, which can 

be used in gait analysis application to classify pathological 

gait patterns, using 3D GRFs data and by utilizing different 

machine learning algorithms. Particularly, the proposed 

method was tested and evaluated using three groups of 

subjects: healthy, cerebral palsy (CP), and multiple sclerosis 

(MS). CP and MS are neurological diseases causing gait 

impairments. 

II. METHODOLOGY 

A. Participants 

This study was approved by the Institutional Review 

Boards (IRB) of the University of Texas at El Paso (UTEP), 

and all subjects signed an informed consent form prior to 

participation. Twenty subjects were recruited for the purpose 

of the study: Twelve healthy adults (mean± std: age 

27.1±5.9 years, weight 71.4±11.5 kg, height 171.6±8.3 cm, 

and body mass index (BMI) 24.2±2.8 kg/m
2
), four spastic 

diplegic cerebral palsy patients (age 29.5±17.5 years, weight 

67.8±17.9 kg, height 162.3±8.7 cm, and BMI 25.4±4.2 

kg/m
2
), and four relapsing remitting multiple sclerosis 

patients (age 50.3±11.5 years, weight 99.7±32.5 kg, height 

167.8±14.5 cm, and BMI 34.5±5.8 kg/m
2
). 

Although the database is rather modest which may limit 

the generalization of extracted features and then affect the 

classifications accuracy, this work represents a preliminary 

study for investigation different machine learning algorithms 

that may be used for classification of pathological gait 

impairments. 

B. Data Acquisition 

An instrumented treadmill was used in this study (Bertec 

Corporation, USA). The instrumented treadmill is dual-belt 

type with two independent force plates mounted beneath the 

belts. Each force plate measures the GRFs in three directions 

(FX: mediolateral, FY: anterioposterior, and FZ: vertical) 

while subject walking at a self-selected natural speed for 

three minutes continuously. The GRFs data were acquired at 

frequency of 100 Hz and filtered using 20 Hz second order 

Butterworth low pass filter. The GRFs amplitudes were 

normalized based on body mass [1], [5], and [19]. The stride 

time was specified based on FZ and time-normalization was 

accomplished by re-sampling and expressing each stride in 

percentage rather than time [20]. 

C. Feature Extraction 

Two different feature extraction approaches have been 

evaluated in this study. 

1) Approach I - GRFs Parameters: A common approach 

to represent gait data is based on the amplitudes and 

temporal parameters of data [5]. The maximum and 

minimum GRF amplitudes and their time of occurrence, in 

percentage, were computed for the three GRFs components. 

A total of 19 features were extracted to represent each 

subject as shown in Fig.1. Within the three minutes walking, 

the average value of each feature was calculated across all 

strides. Moreover, left and right values were transformed 

into a common mode value represent the average value for 

both sides, this done to avoid feature dependences on the 

laterality of the disease [5]. 

2) Approach II - Discrete Wavelet Transform (DWT): 

Wavelets are basis functions obtained from a prototype 

called mother function and it can be used to approximate 

data. The DWT compute the approximation coefficients 

using digital filtering to represent the feature vector for 

GRFs data. A mother wavelet function Symlet3 can be used 

to calculate the feature vector for GRFs data [6]. In this 

work, a mother wavelet Symlet3 and a feature vector of 

length 16 coefficients were determined experimentally. 

D. Classification  

1) Nearest Neighbor classifier (NNC): 

The principle of nearest neighbor or k-nearest-neighbor 

algorithm is that the properties of any particular input point x 

are likely to be similar to those of points in the neighborhood 

of x [21]. The neighborhood is defined to include k points, 

and a distance metric, e.g. Euclidean distance, is used to 

identify the nearest neighbors of a query point.  Nearest 

neighbor algorithm is very simple to implement and often 

performs quit well [21]. The typical value of k varies from 1 

to a small percentage of the training data and is selected 

using trial and error [18]. 

2) Artificial Neural Network (ANN): 

ANN is among the most effective learning methods 

currently known for learning to interpret complex real-world 

sensor data [22]. One of the most common ANNs is a multi-

layer feedforward neural network [23]. A multi-layer 

feedforward neural network has been a standard method for 

various applications including gait analysis [16]. It consists 

of interconnected set of simple nodes, neurons, distributed in 

a hidden layer or layers. The inputs are mapped to the nodes 

through an input layer and the outputs are controlled by 

transfer function within each node and by adjusting the 

weights of links between nodes. The learning process in 

neural networks consists of adjusting the weights through 

training in which the actual output approximately matches 

the desired output. Although ANNs can have multiple 
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hidden layers, research suggests that there should be one 

hidden layer with a number of nodes less than input nodes 

[14]. In this study, a multi-layer feedforward neural network 

of one hidden layer has been used. 

3) Classification Evaluation and Performance Measures: 

Cross validation is a common method to evaluate the 

accuracy of classifiers [24]. The classifier is trained with 

training dataset which includes most of the subjects and then 

tested with testing dataset which has few subjects. In Leave-

One-Out (LOO) cross validation, one subject is used for 

testing and the rest are used for training. The classification 

result is then computed and repeated until all subjects have 

participated in the testing dataset. The overall classification 

result is then computed as the average of all testing subjects.  

A typical measure of classification algorithms 

performance is a confusion matrix [25]. An example of a 

confusion matrix with two classes, positive and negative, has 

four elements: TP, true positive, is the number of correctly 

classified positive instances; FN, false negative, is the 

number of positive instances incorrectly classified as 

negative; TN, true negative, is the number of correctly 

classified negative instances; and FP, false positive, is the 

number of negative instances incorrectly classified as 

positive. The classification accuracy is defined as the ratio of 

correctly classified instances to all instances. 

Accuracy = (TP+TN) / (TP+FN+TN+FP) 

Precision and recall are another typical classification 

performance measures defined as [26]: 

Precision = TP / (TP+FP) 

Recall = TP / (TP+FN) 

Precision is the ratio of correctly classified positive 

instances to both correctly and incorrectly classified 

instances as positive. Recall is the ratio of correctly 

classified positive instances to positive instances. 

III.  RESULTS AND DISCUSSION 

A. Feature Sets 

In order to evaluate the effect of each GRFs component 

on the classification accuracy, different feature sets were 

formed using a combination of the three GRFs components. 

Seven feature sets (FZ; FY; FX; FXFY; FYFZ; FXFZ; FXFYFZ) 

were examined.  

A summary of LOO classification accuracy using 

different approaches and classifiers is presented in Table I. 

The highest achieved classification accuracy 85% 

corresponded to: FXFYFZ using NNC and approach I (GRFs 

parameters); the same set of features using ANN and 

approach II (DWT); FXFY using ANN and approach I. The 

results on a single force component indicate that FX is the 

most discriminatory and FZ is the worst. 

In general, the feature extraction approach I, GRFs 

parameters, depicts better accuracy than DWT associated 

with NNC, whereas the result varies in the case of ANN. 

Both NNC and ANN have the same range of classification 

accuracy among all feature sets. 

B. Features Selection 

In view of previous results, further investigation has been 

made to enhance the results by applying effective features 

selection techniques. In order to select the most significant 

features, GRFs parameters, it is important to investigate the 

contribution of each feature set to classification for each 

class of gait patterns: healthy, CP, and MS. Fig.2 shows the 

LOO classification accuracy for all classes using NNC.  

Alaqtash et al. [27] recorded that FZ of MS patients shows 

a significant longer stance phase. Moreover, the contact 

force was relatively flat with a single peak force as shown in 

the same force curve, whereas the same curve of healthy 

subjects exhibits the M shape with two peaks to reflect the 

weight transfer from the heel to the mid-foot and to the ball 

of the foot for push-off.  

Although FZ provides full discrimination accuracy 

between healthy and pathological gait pattern, FZ leads to 

lower classification accuracy for both pathological gaits CP 

and MS as shown in Fig.2. Therefore, another representation 

of FZ has been investigated based on the M shape [3]. FZ 

force was represented as either M-shaped or non M-shaped. 

M-shaped was defined as both ratios FZ2 / FZ1 and FZ2 / FZ3 

are less than 0.9; others were defined as non M-shaped. The 

number 0.9 was determined experimentally.  

As a result, using an input feature set consists of the 

complete FX and FY features sets and one feature represents 

FZ (1: M-shaped, 0: non M-shaped), the classification 

outcomes are recorded in Table II. The result shows 100% 

for precision and recall measures of healthy subjects. This 

result demonstrated that full discrimination between healthy 

and pathology gait can be achieved using one feature, M-

shaped, represents FZ in addition to the complete FX and FY 

features sets. Moreover, the confusion matrix depicts that all 

misclassified instances are located within the pathological 

gait classes. Therefore, further enhancement can be made if 

a certain features selection technique applied for FX and FY 

sets.  

The statistical significant difference test, analysis of 

variance (ANOVA), was employed in this study to evaluate 

the effect of each feature on the difference between CP and 

MS classes. The p-value depicts the significant difference 

between CP and MS classes corresponding to a certain 

feature. The p-value was calculated for each feature in FX 

and FY sets and therefore features were sorted based on p-

value. Fig.3 demonstrates the features selection order and 

the corresponding classification accuracy. It can be observed 

that the best LOO classification accuracy 95% was achieved 

using the optimal feature set of six features; one feature from 

FZ : M-shaped;  three from FX : FX1, TX3, and FX3; two from 

FY: TY3 and TY2. The classification performance measures: 

confusion matrix, precision, and recall, using the optimal 
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feature set are shown in Table III. The results clearly 

indicate that the classification performance significantly 

increased using the optimal feature for the three classes. The 

overall performance measures are 96% and 95% for 

precision and recall, respectively. 

IV. CONCLUSION 

In this study, an automated gait classification tool was 

developed. A classification of healthy, CP, and MS gait 

patterns, was performed using the three components of 

GRFs data (FX, FY, and FZ) and by utilizing different 

machine learning algorithms. The proposed method was 

tested and evaluated using three groups of subjects: healthy, 

CP, and MS. Two feature extraction algorithms (GRFs 

parameters and DWT) and two classifiers (NNC and ANN) 

have been investigated and the result was evaluated. Further 

enhancement on classification accuracy has been made 

applying a features selection algorithm based on M-shaped 

value of FZ and the statistical test ANOVA of FX and FY. The 

best LOO classification accuracy 85% was achieved without 

features selection. An improvement of the result was 

achieved using features selection. The accomplished 

classification accuracy was 95% corresponding to the 

optimal set of six features.  

This study has demonstrated some significant points: 1) a 

comparison between two different feature extraction 

approaches depicts that GRFs parameters approach 

associated with NNC has higher classification accuracy than 

DWT; 2) both NNC and ANN have the same range of 

classification accuracy among all feature sets; 3) full 

discrimination between healthy and pathology gait can be 

achieved using one feature, M-shaped, represents FZ in 

addition to the complete FX and FY features sets; and 4) a 

features selection method can be used to enhance the 

classification accuracy and the statistical test ANOVA is a 

possible technique for that.  

This work can provide an automated gait classification 

tool that may be useful to the clinician in the diagnosis and 

identification of pathological gait impairments. 
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TABLE I 

SUMMARY OF CLASSIFICATION ACCURACY USING THE DIFFERENT APPROACHES AND CLASSIFIERS 

Classifier Features FZ FY FX FX,FY FY,FZ FX,FZ FX,FY,FZ 

NNC 
Approach I a 65% 70% 80% 75% 75% 75% 85% 
Approach II b 65% 65% 70% 60% 65% 75% 60% 

ANN 
Approach I 70% 70% 75% 85% 75% 70% 80% 

Approach II 60% 75% 80% 80% 70% 70% 85% 
a GRFs parameters      b DWT 

 

TABLE II 
THE CLASSIFICATION PERFORMANCE MEASURES USING M-SHAPED, FX 

AND FY FEATURES 

(a) CONFUSION MATRIX 

 
CP MS Healthy 

CP 2  2 0 

MS 1 3 0 

Healthy 0 0 12 

(b) PRECISION AND RECALL 

 
Precision Recall 

CP 75%  50 % 

MS 60% 75% 
Healthy 1 1 

 

 

TABLE III 
THE CLASSIFICATION PERFORMANCE MEASURES USING THE OPTIMAL 

FEATURE SET 

(a) CONFUSION MATRIX 

 
CP MS Healthy 

CP 3  1 0 

MS 0 4 0 

Healthy 0 0 12 

(b) PRECISION AND RECALL 

 
Precision Recall 

CP 100% 75% 

MS 80% 100% 
Healthy 100% 100% 

Weighted Average a 96% 95% 
a Average of 12 healthy, 4 CP, and 4 MS. 

 

 
Fig. 1. GRFs parameters. 

 

 
Fig. 2. Classification accuracy for all classes using NNC. 

 

 
Fig. 3. Features selection order and the corresponding classification 

accuracy. 
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