
  

  

Abstract—Variation of probe immobilization on microarrays 
hinders the ability to make high quality, assertive and 
statistically relevant conclusions needed in the healthcare 
setting. To address this problem, we have developed a 
calibrated, compact, inexpensive, multiplexed, dual modality 
point-of-care detection platform that calibrates and correlates 
surface probe density measured label-free to captured labeled 
secondary antibody, is independent of chip-to-chip variability, 
and improves upon existing diagnostic technology. We have 
identified four major technological advantages of our proposed 
platform: the capability to perform single spot analysis based 
on the fluorophore used for detection, a 10-fold gain in 
fluorescence signal due to optimized substrate, a calibrated, 
quantitative method that uses the combined fluorescent and 
label-free modalities to accurately measure the density of probe 
and bound target for a variety of systems, and a compact 
measurement platform offering reliable and rapid results at the 
doctor’s office.  Already, we have formulated over a 90% linear 
correlation between the amount of probe bound to surface and 
the resulting fluorescence of captured target for IgG, β-
lactoglobulin, Ara h 1 peanut allergen, and Phl 5a Timothy 
grass allergen.  

I. INTRODUCTION 
EPRODUCIBILITY issues in microarrays are receiving 
more attention as technologies mature for clinical 

applications, which require a high degree of validity and 
reliability [1]-[3]. Label-based procedures have been 
developed to account for variation in probe deposition and 
binding to the surface in order to visualize the printed slides 
prior to experimentation [4]-[8]. Although these techniques 
verify the presence of uniformly bound probe, they may 
potentially negatively affect the activity of the probe, fail to 
quantify amount of bound probe on surface, and may alter 
physiochemical properties. Recently, an approach that 
utilizes a phototonic crystal biosensor surface and a high 
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resolution label-free imaging detection instrument to 
formulate prehybridization images of spotted nucleic acid 
array was recently reported as a sensitive method of quality 
control [9].  However, asides from being a tool for only 
DNA microarray quality control, this method solely rates the 
spot as being suitable or unsuitable for analysis and does not 
offer the quantified amount of bound probe to secondary 
antibody required in the field of clinical and medical 
diagnostics. 

Our label-free technology, the Interferometric Reflectance 
Imaging Sensor (IRIS), is a quantitative, high-throughput, 
simple, robust, and versatile technology used for multiplexed 
detection of DNA and proteins with high sensitivity [12]-
[16].  We have combined the IRIS platform with a new 
enhanced fluorescence technology, creating a novel device 
by combining the sensitivity of fluorescence with the 
quantitative accuracy of IRIS: the Calibrated Fluorescence 
Enhancement (CaFE) platform. The CaFE platform uses its 
two modalities, label-free and fluorescence imaging, to 
address microarray reproducibility issues by quantifying the 
initial bound probe. The innovation relies on having both of 
these regions with identical surface preparation and ensuring 
that both regions bind the capture molecules simultaneously. 
This feature allows the use of specialized polymeric coatings 
(copoly(DMA-NAS-MAPS) [17], [18]) to covalently link 
capture agents to the surface, while maintaining high 
functionality and preventing non-specific binding.  Systems 
utilizing a capture probe to quantify specific interacting 
partners would benefit from the CaFE platform.  Examples 
include but are not limited to: detecting the presence of 
allergen-specific IgE for allergy diagnosis; the presence of 
hepatitis antibodies in liver disease, measurement of anti-
HIV antibodies, and the presence of autoantibodies 
monitored in rheumatologic disease. 

To optimize fluorescence over a broad range of 
fluorophores and label-free modalities, we have fabricated 
chips that have “islands” of 500nm oxide and 100nm oxide. 
First, the probes spotted on the 500nm region are measured 
to quantify the immobilized probe density. This information 
is then used to calibrate and quantify the signal observed in 
the enhanced fluorescence region. In protein and peptide 
microarrays, there was an observed improvement factor of 
10x for optimized SiO2 thickness (~100nm) over 
conventional glass slides [19]. Recently, this CaFE chip was 
shown to be of practical use and high utility to the 
microarray development process by allowing the opportunity 
to check spotting morphology and facilitate optimization 
conditions for protein solubility and binding [20]. 

To achieve the single spot analysis, we have performed 
simulations modeling a fluorophore as a dipole emitter on a 
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planar, dielectric surface [21] in order to design a single 
thickness oxide on silicon chip capable of both fluorescence 
and label-free measurement. We have optimized these 
simulations for Cy3 and Cy5 emitters.  

II. MATERIALS AND METHODS 
A. Silicon chip microfabrication 
The combination 500nm and 100 nm SiO2 chips with bare 

silicon reference were fabricated using photolithography 
patterning processes and wet etching.  Wafers of 500 nm 
thermally grown SiO2 on a silicon substrate were purchased 
from Silicon Valley Microelectronics (Santa Clara, CA).  
Acetone sonication for 10 minutes and oxygen plasma 
ashing at 300sccm and 500W for 10mins were used to 
remove organic residue on the surface.  
Hexamethyldisilazane (HMDS) and Shipley S1818 positive 
resist were spun onto the surface at 2krpm for 30 seconds. 
The chip was exposed for 30s at 15mW and then developed 
for 45 seconds in the SUSS Mask Aligner MA6 and Micro-
Dev resist developer, respectively, to form the bare silicon 
reference pattern.  The exposed region of the wafer was 
etched 500 nm submerged in BOE 6:1. Fluorescence islands 
were etched from 500nm to 100nm with BOE 6:1 diluted 
1:40 with DI.  Finally, the resist was striped to reveal a chip 
with label-free and enhanced fluorescence SiO2 regions to 
the reflectance curve. 

B. Reagents and equipments 
TRIS, BSA, Tween 20, PBS tablets, rabbit 

immunoglobulin G, carbonic anhydrase, bovine serum 
albumin were purchased from Sigma (St. Louis, MO).  
Rabbit anti-β-lactoglobulin was purchased from Bethyl 
Laboratories (Montgomery, TX), goat anti- α-lactalbumin 
from GeneTex Inc (Irvine, CA) and AbCam (Cambridge, 
UK). Secondary antibodies (Cy3-labelled goat anti-mouse 
IgG and mouse anti-goat IgG) were purchased from Jackson 
ImmunoResearch (West Grove, PA) and anti-IgE was 
purchased from BDBioscences. Allergens Bet v 1a (Bet v 
1.0101), Phl p 1 (Phl p1.0101), Phl p 5 (Phl p 5.0101) and 
Alt a 1 (Alt a 1.0101) were recombinant allergens from 
Biomay, (Vienna, Austria) and allergens Bet v 2 (Bet v 
2.0101), Phl p 7, nDer p 1, nDer p 2 and nFel d 1 were 
recombinant (or native, when prefix "n" is used) allergens 
from Indoor Biotechnologies Ltd (Warminster, UK). 

Silicon slides were immersed for 30 minutes in a copoly 
solution (DMA-NAS-MAPS) at 1% concentration in a 
solution of water and 20% saturated ammonium sulphate. 
Slides were washed with water and dried at 80°C for 15 
minutes.  This particular polymeric coating does not change 
the optical properties of the setup.  

C. Self-Calibration Single Spot Analysis Simulations 
A radiation model of emitters near a dielectric interface 

was used to perform simulations comparing the 
enhancement of 100nm SiO2, 320nm SiO2, and traditional 
glass over a range of emission wavelengths of commonly 
used fluorophores (Alexa Fluor® 359, Alexa Fluor® 488, 
Cy3 dye, Cy5 dye, and Alexa Fluor® 647). 

D. IgG and β-lactoglobulin calibration 
As proof of concept, 20 replicates IgG and β-lactoglobulin 

of varying concentrations (0.015, 0.03, 0.063, 0.125, 0.25, 
and 1 mg/ml) were spotted onto 2 and 3 CaFE chips using a 
BIORAD Calligrapher Spotter.  After overnight humid 
chamber incubation, the chips were washed with 50 mM 
ethanolamine in TRIS/HCl 1 M pH 9 for 1 hour, rinsed with 
water, dried with a stream of argon gas, and then measured 
using IRIS.  They were then incubated with 100 ul of 
specific labeled antibody in incubation buffer (Tris/HCl 0.05 
M pH 7.6, NaCl 0.15 M, Tween 20 0.02%) with 1% w/v 
BSA for 1 hour at 0.001 mg/ml.  Another IRIS measurement 
was taken after washing with PBS for 10 min, rinsing with 
water, and drying with argon. 

Afterwards, fluorescence evaluation was performed by a 
fluorescence scanner, GenePix 4000B Microarray Scanner.  
CaFE slides were analyzed using 39% Photomultiplier 
(PMT) and 33% laser power. Fluorescence intensities of all 
20 spots were averaged. 

E. CaFE Implanted as an Allergy Testing Platform 
To evaluate CaFE as a clinical diagnostic platform, 9 

allergens (peanut (Ara h 1), apple (Mal d 1), shrimp (Pen a 
1), timothy grass (Phl p 1), timothy grass (Phl p 5), dust mite 
(Der p 1), cat (Fel d 1), birch (Bet v 1a), and mold (Alt a 1)) 
were spotted in replicates of 3 at 4 concentrations (0.25 
mg/ml, 0.5 mg/ml, 0.75 mg/ml, and 1.0 mg/ml) on 2 CaFE 
chips.  In addition, PBS and IgG were spotted as negative 
and positive control parameters. After overnight humid 
chamber incubation, the chips were washed with 50 mM 
ethanolamine in TRIS/HCl 1 M pH 9 for 1 hour, washed 
with water, dried with a stream of argon gas, and then 
measured using IRIS.  The chips were then incubated with 
100 ul of documented patient sera allergic to peanut and 
timothy grass Ph p 1 in incubation buffer with 1% w/v BSA, 
for 2 hours at 0.001 mg/ml. Slides were then washed with 
washing buffer for 10 minutes, rinsed with water, and dried 
with argon gas. After incubating with 0.01 mg/ml anti-IgE 
labeled with Cy3, the chips were washed with PBS (10 min), 
rinsed with water, dried with argon, and measured with 
IRIS. 

Scanning for fluorescence evaluation was performed by a 
Genepix 4000B Microarray Scanner.  CaFE slides were 
analyzed using 90% Photomultiplier (PMT) and laser power. 
Fluorescence intensities of all 20 spots were averaged.   

III. RESULTS AND DISCUSSIONS 
A. Self-Calibration Single Spot Analysis Simulations 
A radiation model of emitters near a dielectric interface 

was used to model fluorescence emission enhancement of 
Cy3 and Cy5 fluorophores on silicon oxide versus glass at 
varying wavelengths to investigate the feasibility of the 
single spot analysis (Fig. 1). After investigation, it was 
determined that an oxide thickness of 320nm would be 
appropriate to replace the optimized 100nm oxide thickness 
used in the CaFE chip for Cy3 and Cy5 fluorophores. It is to 
be noted that if we were to chose to only optimize for Cy3 or 
for another particular fluorophore, such as Alexa-647, we 
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would chose an alternative oxide thickness 
optimize for that particular fluorophore
particular fluorophore to be used in detecti
can design our platform for enhanced emiss
level nearly identical to our optimized 
analyze the spot with both label-fre
measurements. 
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labeled secondary antibody and bound 
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calibration curve of each protein planned t
diagnostic test would have to be form
determining immobilized probe on surfa
strong linear dependence is observed betw
secondary target and the bound target on
Yet, results hint at a possible saturation
concentrations. This trend supports the fact 

Fig. 2. Fluorescence versus bound target to spot labe
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CaFE platform yields calibrated, linear responses from
variety of proteins. 
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D. Conclusions 
Quality control and reproducibility a

obstacles in utilizing multiplexed testin
format in the field of healthcare and diagn
this problem, we have developed the C
provide a calibrated technique quantifyi
signal to bound target on surface.  We have
of-concept data showing that IgG an
lactoglobulin correlated to captured Cy3-la
antibody as well as data showing that tw
major allergens, peanut and timothy grass
correlation between enhanced fluorescence 
amount of bound serum to initial allergen 
our IRIS measurement; this relationship is
fluorescence signal and initial spotting c
analyzed.  In addition, the CaFE calibratio
of sample variation seen in current microa
demonstrating the effectiveness of a singula
platform. 
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