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Fig. 2.  Bragg reflections from two different cellulose crystals from a dried sample of corn stover.  They are representative of the variety of 
different intensity distributions that were observed in individual samples, reflecting the diversity of crystal morphology present in the maize 
plant cell wall. 

in corn stalks) were obtained from dried corn stover; from 
stover frozen immediately after harvesting; and from freshly 
frozen, immature maize.  Figure 1 indicates the location of 
vascular bundles in a dried fragment of corn stover.  Initial 
experiments on nanocrystalline cellulose (provided by Derek 
Gray (McGill) and John Simonsen (Oregon State)) 
demonstrated an unacceptable sensitivity to radiation when 
exposed at room temperature.  Collection of a three-
dimensional data set around a Bragg reflection can take 3-10 
minutes.  Comparison of multiple data sets collected from 
the same crystallite indicated a substantial reduction of 
intensity with exposure time.  Consequently, subsequent data 
sets were collected with the sample maintained at liquid 
Nitrogen temperatures within an evacuated Beryllium dome 
(to prevent accumulation of ice crystals on the sample).  
Materials kept at cryogenic temperatures exhibited no 
detectable decrease in intensity after collection of multiple 
data sets, and successive data sets collected around the same 
Bragg peak were essentially identical.  

Figure 2 includes representations of intensity speckle 
around the (0 1 2) reflection from cellulose crystals within 
two samples of corn stover.  The intensity distributions are 
distinctly different from one another and representative of 
the variety of distributions observed.  Cellulose crystals 
clearly exhibit a wide range of sizes and shapes as observed 
by coherent diffraction.  Data derived from dried samples 
appeared rather different in form from analogous data from 
freshly frozen materials; the characteristics of the intensity 
distributions were clearly distinguishable.  There were 
however, some clear similarities among the data sets.  In 
particular, all reflections appeared to arise from crystallites ~ 
300-600 nm across and from 500-2000 nm in length as 
judged from the distribution of speckles and the extent of the 
autocorrelation function calculated from the data.   

 
Atomic force microscopy and electron microscopy of 

cellulose fibrils in maize [8], [9] have been used to identify 

'macrofibrils', 50-250 nm in diameter and many microns in 
length.  Coalescence of macrofibrils occasionally results in 
larger crystalline domains, and it is these larger domains that 
dominate the data sets we have collected to date.  The data 
collection strategy, in which we scan the samples across the 
beam until we observe a Bragg reflection, biases our data to 
the larger crystallites.  The length of crystallites as observed 
in Bragg CDI appears substantially less than that observed in 
scanning electron microscopy, AFM or TEM.  That is due to 
the twisting of fibrils.  CDI will only image the segment of 
the crystal that is 'spatially coherent', oriented in the same 
direction and diffracting towards the same Bragg reflection.  
Segments of the crystal twisted more than a very limited 
amount will scatter outside the sphere of reflection; will not 
contribute to the observed scatter; and will not be included 
in the reconstructed image.   

 
Twisting of crystalline fibrils will give rise to a 

distribution of strain across and through the fibril.  The 
imaginary part of the reconstructed image provides 
information on the distribution of strain in a crystal [10] and 
we anticipate deriving information about the magnitude of 
twist and strain from those data.   In particular, the fibrils in 
the center of a twisted fibril should be under compression; 
those near the periphery should be extended [11], [12].   

III. DISCUSSION 
These results and analogous studies of collagen fibrils 

[13] demonstrate the feasibility of in situ Bragg CDI studies 
of crystalline fibrils of soft, biological materials.  This is an 
under-characterized class of biomaterial that constitutes an 
important constituent of many connective tissues as well as 
pathological deposits such as those associated with 
neurological degeneration.  Development of efficient 
protocols for data collection and algorithms for data analysis 
and phasing will help develop CDI into an important tool for 
expanding our understanding of a broad range of tissues.   
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