
  

  

Abstract—In this paper, a fully automatic active-contour-
based segmentation method is presented, for detecting the 
carotid artery wall in longitudinal B-mode ultrasound images. 
A Hough-transform-based methodology is used for the 
definition of the initial snake, followed by a gradient vector 
flow (GVF) snake deformation for the final contour detection. 
The GVF snake is based on the calculation of the image edge 
map and the calculation of GVF field which guides its 
deformation for the estimation of the real arterial wall 
boundaries. In twenty cases there was no significant difference 
between the automated segmentation and the manual diameter 
measurements. The sensitivity, specificity and accuracy were 
0.97, 0.99 and 0.98, respectively, for both diastolic and systolic 
cases. In conclusion, the proposed methodology provides an 
accurate and reliable way to segment ultrasound images of the 
carotid artery. 

Keywords— Carotid artery wall, B-mode ultrasound, 
Segmentation, Hough transform, Gradient vector flow snake. 

I. INTRODUCTION 
LTRASOUND imaging of the carotid artery is widely 
used in the diagnosis of atherosclerosis, because it 

provides valuable information about the arterial wall and 
plaque morphology. Measurements of the lumen diameter 
are conventionally obtained by manually tracing the wall-
lumen interface. In practice this procedure is time 
consuming and extremely subjective because it depends on 
the training, the experience and the expertise of the observer. 
The manual measurements suffer therefore from 
considerable inter- and intra- observer variability [1]. To 
address these problems, advanced computerized image 
segmentation methods have been developed for accurate 
measurements of the carotid artery. Previous studies on 
segmentation of the carotid artery wall have proposed the 
application of inflating balloon models [1], dynamic 
programming [1], deformable models [3] and active 
contours [4], [5]. Among them, active contour models have 
been proved to be more effective.  

The methods in the previously mentioned studies are 
effective, but they are either automatic with high complexity 
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and computational cost [1] or semiautomatic due to user 
interaction in the initialization step [1]–[5]. To overcome 
these drawbacks, attempts have been made to implement 
fully automatic detection methods with low complexity and 
computational cost either by using known image transforms 
or by automating the initialization step of the active contour 
methods [6], [7]. Specifically, the Hough transform (HT) 
was used to automatically segment the arterial wall from 
ultrasound images [8], [9]. Golemati et al. [8] proposed a 
fully automatic method to extract the arterial wall in the 
form of straight lines and circles, for longitudinal and 
transverse ultrasound image sequences of the carotid artery, 
respectively. Despite the good performance of the method, 
the HT failed to match the random shape of the arterial wall. 
However, it can be used to provide an initial contour 
estimation for the active contour method [10]. Stoitsis et al. 
[10] used HT combined with an active-contour-based 
method to automatically detect the arterial wall boundaries 
in transverse sections of the carotid artery.  

The objective of this paper was to investigate the 
possibility of combining two segmentation techniques, the 
HT and the gradient vector flow (GVF) snake, in an attempt 
to improve the snake initialization method and implement an 
open GVF snake deformation to automatically detect the 
carotid artery wall from longitudinal B-mode ultrasound 
images. The method relies on the use of the HT transform 
methodology described in [8] to estimate the initial snake 
contour, which is then processed and deformed according to 
the GVF snake model [11]. The results of the method are 
validated in real ultrasound images through comparisons 
with measurements obtained from manually delineated wall 
boundaries. 

II. MATERIAL AND METHODS 

A. Recording of Ultrasound Images 
A total of 10 systolic and 10 diastolic B-mode 

longitudinal ultrasound images were selected from image 
sequences of the common carotid artery. The image 
sequences were recorded from young subjects (ages: 25-32 
years) with normal, i.e. non-stenotic, carotid arteries. For 
each subject, image sequences were acquired with an ATL 
(Advanced Technology Laboratory) Ultramark 4 Duplex 
scanner (Philips Medical Systems, Bothell, WA, USA) and a 
high resolution 7.5MHz linear array scan head. Scanner 
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settings were constant for all measurements at the following 
values: dynamic range 60dB; 2-D gray map linear; 
persistence low; frame rate high. The gain, which is a 
subjective parameter in scanner settings, was adjusted so that 
the blood and adventitia fulfilled the following criteria: (a) 
the blood was dark and with uniform echogenicity and (b) 
the adventitia was thick, bright and with uniform 
echogenicity. The sequences were recorded at a rate of 25 
frames/s for approximately 3 seconds, corresponding to 2-3 
cardiac cycles, during breath holding. 

B. Detection of the Arterial Wall Boundaries 
In all images, the average gray-scale median (GSM) of the 

pixels in the blood ranged between 0 and 5, whereas that of 
the adventitia between 180 and 190. According to widely 
accepted specifications for normalization of B-mode 
ultrasound images of the carotid artery, images with these 
GSM values are considered normalized and therefore no 
further standardization was performed. It is recommended 
that the methodology described below is applied to 
normalized ultrasound images to minimize variability 
introduced by different equipment, operators and gain 
settings and facilitate tissue comparability. 

The proposed methodology includes the following steps, 
presented in more detail below: (1) estimation of the initial 
arterial wall contour using the HT methodology described in 
[8], (2) calculation of the image edge map, (3) calculation of 
the GVF field using the image edge map calculated in the 
previous step, and (4) deformation of the initial contour 
based on the GVF field. 

 Initial arterial wall estimation using HT. The HT 
technique allows the automatic extraction of straight lines 
representing the wall-lumen boundaries in longitudinal 
images [8]. HT is applied on the 21 NN ×  binary image, 
resulting from the edge detection step, and transforms it to a 
parametric matrix ),( θrP , where ),( θr  are the polar 
coordinates of a straight line of the form 

θθ sincos yxr += , and 2
2

2
10 NNr +≤≤  and θ  are the 

distance from the upper left corner of the image and its angle 
with the x-axis, respectively. For every binary edge image 
pixel and for any angle °≤≤° 10575 θ , the matrix element 
corresponding to the coordinates ),( yx is increased by the 
magnitude of the gradient. The main steps of the technique, 
described in detail in [8], include: (1) reduction of image 
area; this is important because it minimizes the possibility to 
detect unwanted structures, and also reduces the 
computational cost and the time required for the 
segmentation, (2) image pre-processing, (3) edge detection, 
(4) application of HT, and (5) selection of dominant lines.  

Calculation of the image edge map. This step includes 
the processing of the reduced image that resulted from the 
HT methodology in order to estimate the gradient field of 
the image edge map. The processing step includes the 
following tasks: (1) calculation of the gradient field by 
applying the gradient operator, (2) thresholding the gradient 

field to remove the small gradient values due to speckle 
noise and to enhance the strong edges, (3) morphological 
closing and opening of the image and smoothing of the 
gradient field, using a symmetric Gaussian low-pass filter 
with kernel size 7×7 and σx=σy=1, and (4) gradient operator 
application to estimate the image edge map. The edge map 
derived from the image has large values near the edges and 
zero value in homogeneous regions of the image. 

Calculation of the GVF field. The GVF field, defined 
by ]),,([),( υ(x,y)yxuyx =v , was calculated to minimize the 
energy functional [11]: 

dxdyffυυuuΕ yxyx
222222 )( ∇−∇++++⋅= ∫∫ vμ  (1) 

where f is the image edge map, calculated in the previous 
step, ),( yx fff =∇  is the gradient of the image edge map, 

and μ  is a regularization parameter that should be set 
according to the amount of noise present in the image (more 
noise, increased μ ) [11]. A value of 0.2 was used for μ in 
this study.  

Minimizing the energy functional of equation (1) gives 
rise to the following two independent Euler equations [11]: 
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where 2∇ is the Laplacian operator. The GVF field can be 
found solving equations (2). 

Deformation of the initial contour based on the GVF 
field. The initial curve defined in the initialization step is 
considered to be a snake that uses the GVF field as its 
external force. This GVF snake is defined as the parametric 
curve )]()([ s,ysx(s) =x  solving the dynamic equation [11]: 

)(  ),( xvxxx ⋅+′′′′⋅−′′⋅= ktst βα  (3) 
where x is treated as a function of time t and space s , α and 
β are the tension and rigidity parameters of the snake, 
respectively, and k  controls the extent to which the GVF 
field affects the deformation of the curve. The 
values 05.0=α , 0=β , and 1=k  were used in this study.  

The dynamic equation (3) is solved by discretization and 
iteration, in identical fashion to the traditional snake. The 
iterative equations for the snake deformation of the initial 
curve are [11]: 
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where x and y are the coordinates’ vectors of the points of  
the curve, tΔ= /1γ  the step size of the iteration, I  a 
diagonal identity matrix and A  is a pentadiagonal matrix 
with incorporated boundary conditions for the open-ended 
snake used for the longitudinal images. After each iteration, 
the snake is dynamically re-parameterized to maintain the 
point separation within 0.5-1.5 pixels [12]. 
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C. Validation methodology 
The parameters Dmean, Dmedian, Dmin, and Dmax were 

computed, corresponding to the mean, median, minimum 
and maximum, respectively, vertical distances between the 
anterior and posterior wall contours obtained from the 
automated and manual segmentations. The range R of the 
measurements was calculated as the difference between Dmax 
and Dmin. 

The Wilcoxon matched pairs rank sum test was used to 
identify whether significant differences existed between the 
contours obtained from the manual and the automated 
segmentation procedures, at p<0.05. 

To evaluate the performance of the proposed method, the 
automatically defined wall-lumen boundaries were 
compared with the boundaries defined manually by an 
expert physician. The area corresponding to automatic 
segmentation is the surface defined by the two random-
shaped boundaries corresponding to the anterior and 
posterior walls (calculated from the deformation of the 
snake) and the two lines connecting the previous ones at 
their left and right edges. The area corresponding to the 
manual segmentation is the surface defined by the two 
random-shaped boundaries corresponding to the anterior and 
posterior walls (delineated by the physician) and the two 
lines connecting their left and right edges. 

Receiver operating characteristics (ROC) analysis was 
used to assess the sensitivity, specificity, and accuracy of the 

method calculated as described in [8], after estimating the 
number of true positive, true negative, false positive and 
false negative pixels. True positive pixels are the pixels that 
automatic and manual segmentation identified as segmented; 
true negative are the pixels that automatic and manual 
segmentation did not identified as segmented; false positive 
are the pixels that automatic segmentation identified as 
segmented, but manual segmentation did not; and false 
negative pixels are the pixels that manual segmentation 
identified as segmented but automatic segmentation did not. 
Sensitivity, specificity and accuracy were estimated 
separately for the images corresponding to diastole and 
systole. 

III. RESULTS 
Figure 1 shows an example of the application of each step 

of the proposed method in a longitudinal section of the 
carotid artery. It can be easily observed that, compared to the 
initial HT-transform-based boundary (Fig. 1(b)), the result of 
the present method (Fig. 1(e)) provides a better estimation of 
the random shape of the arterial wall. 

Table I shows the diastolic and systolic diameter values 
(average values ± std) for the manually and automatically 
segmented images and the corresponding p-values. The 
automated measurements had a significantly larger range of 
values than the manual ones (p-value = 0.03 for diastole and 
p-value = 0.005 for systole), while the mean and median 
values were underestimated in both diastolic and systolic 
cases. However, no statistically significant difference was 
found between manual and automated measurements, with 
an exception for the underestimation of the diastolic Dmin 
measurement (p-value = 0.003). 

The ROC analysis results for the sensitivity, specificity 
and accuracy (average values ± std) are presented in Table 
II. For comparison reasons, the corresponding results of the 
HT segmentation methodology, applied in [8], are also 
presented. It can be seen that the ROC indices of the method 
are particularly high with sensitivity values being slightly 
lower compared to the two other indices. 

The time needed to detect the two wall boundaries in a 
single image did not exceed 40s using a 3.00 GHz personal 
computer, indicating the low computational cost of the 
method. 

IV. DISCUSSION 
The proposed methodology provides a fully automatic 

segmentation of the arterial lumen of the carotid artery in 
longitudinal ultrasound images. Its main advantage is the 
HT-based initialization step, which overcomes the 
limitations of the user-initialized active contour methods. In 
a small dataset of normal subjects the method exhibited high 
sensitivity, specificity and accuracy. 

The large range of values on the diameter metrics showed 
that the automated measurements are not very concentrated, 
which may be due to the limited number of images used in 
this study. In the case of the diastolic Dmin measurement, the 

 
(a) 

(b) (c) 

 (d) (e) 
Fig. 1.  Example of the results of the application of each step of the 
proposed method: (a) original image, (b) initial arterial wall 
estimation using HT, (c) the image edge map, (d) the gradient flow 
field and (e) final contour after deformation based on the GVF 
field. 
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significant underestimation noted could be caused by the 
speckle noise and the choice of parameter values in the 
morphological closing and opening tasks during the 
calculation of the edge map. 

In terms of the ROC indices, the methodology seems 
superior compared to those of other studies. Specifically, it 
is shown in Table II that in comparison to the corresponding 
results of the HT methodology [8], all validation indices 
were increased with the application of the HT-initialized 
GVF methodology. Ceccarelli et al. [6] reported a 
percentage of correct detection of the intima-media complex 
higher than 84.78% using automatically initialized active 
contours. Cheng et al. [4] also detected the intimal and 
adventitial layers of the carotid wall using a semi-automatic 
active-contour-based method, with mean square errors of 
0.6510 and 0.4022, respectively. The application of a semi-
automatic balloon-model-based approach [2] for the 
segmentation of three-dimensional (3D) carotid images 
showed agreement with the manual segmentation at 65% of 
the 3D-mesh points. However, direct comparison with the 
previous studies is difficult and cannot lead to safe 
conclusions, because the image samples, the applications, 
and the validation criteria are different. 

It should be noted that the lower sensitivity values 
indicate that the method is more efficient for the detection of 
true negative pixels than for true positive pixels. This may 
be due to the quality of the images and also the fact that in 
the tested images the percentage of true negative pixels is 
quite high. Furthermore, the parameter values used in the 
image edge map calculation can affect the performance of 
the methodology and their selection should be made 
carefully. In this paper, the values used were selected 
according to the image characteristics based on experiments 
performed on a small set of data. 

V. CONCLUSION 
In this paper a simple and accurate method was suggested, 

that can be used for the segmentation of the carotid artery 
wall in longitudinal B-mode ultrasound images. The initial 
estimate of the contour is derived from the application of the 
HT methodology and the contour is then deformed using 
GVF snakes. The method will be further evaluated on larger 
datasets, including images of atherosclerotic vessels. 

 
 
 

TABLE II 
AVERAGE VALUES ( ± STD) OF SENSITIVITY, SPECIFICITY AND ACCURACY 

OF THE HT AND HT–INITIALIZED GVF METHODOLOGIES 

 HT HT-initialized GVF 
Sensitivity   

Diastole 0.96 ± 0.03 0.971 ± 0.006 
Systole 0.97 ± 0.02 0.976 ± 0.006 

Specificity   
Diastole 0.97 ± 0.02 0.992 ± 0.002 
Systole 0.98 ± 0.01 0.993 ± 0.002 

Accuracy   
Diastole 0.97 ± 0.01 0.985 ± 0.001 
Systole 0.98 ± 0.03 0.988 ± 0.003 
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TABLE I 
DIAMETER METRICS (AVERAGE VALUES ± STD), IN MM, OF MANUAL AND AUTOMATED SEGMENTATION MEASUREMENTS 

Diastole Systole 
Manual Automated p-value Manual Automated p-value 

Dmean 6.04 ± 0.07 6.00 ± 0.09 0.34 6.77 ± 0.03 6.73 ± 0.07 0.68 
Dmedian 6.04 ± 0.04 5.97 ± 0.06 0.30 6.76 ± 0.05 6.71 ± 0.03 0.52 
Dmin 5.81 ± 0.04 5.57 ± 0.03 0.003 6.46 ± 0.08 6.26 ± 0.06 0.15 
Dmax 6.37 ± 0.03 6.78 ± 0.13 0.08 7.09 ± 0.06 7.41 ± 0.04 0.11 
R 0.56 ± 0.05 1.21 ± 0.13 0.03 0.63 ± 0.08 1.15 ± 0.07 0.005 
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