
 
 

 

  

Abstract— This paper presents a completely user-
independent algorithm, that automatically extracts the far 
(distal) double line (lumen-intima and media-adventitia) in the 
carotid artery using an Edge Flow technique (a class of 
AtheroEdge™ systems) based on directional probability maps 
using the attributes of intensity and texture. The extracted 
double line translates into a measure of the intima-media 
thickness (IMT), a validated marker for the progression of 
atherosclerosis. The Carotid Automated Double Line 
Extraction System based on Edge-Flow (CADLES-EF) is 
characterized and validated by comparing the output of the 
algorithm with two other completely automatic techniques 
(CALEXia and CULEXsa) published by the same authors. 
Validation was performed on a multi-institutional database of 
300 longitudinal B-mode carotid images with normal and 
pathologic arteries. CADLES-EF showed an intima-media 
thickness (IMT) bias of 0.043±0.097 mm in comparison to 
CALEXia and CULEXsa that showed 0.134±0.0.88 mm and 
0.74±0.092 mm, respectively. The system’s Figure of Merit 
(FoM) showed an improvement when compared to previous 
automated methods: CALEXia and CULEXsa, leading to 
values of 84.7%, 91.5%, while our new approach, CADLES-EF 
performed the best with 94.8%. 

I. INTRODUCTION 
he intima-media thickness (IMT) is the most used and 
validated marker of progression of carotid artery 
diseases. This can be measured using image processing 

strategies and ad-hoc computer techniques. The goal is to 
first segment the carotid artery distal wall, so as to then find 
the lumen-intima (LI) and media-adventitia (MA) 
boundaries. The distance estimated between these two 
interfaces is the IMT. The segmentation process can 
conceptually by thought of as two cascading stages [1]: 
• Stage I: recognition of the carotid artery (CA) and 

delineation of the far adventitia layer (ADF) in the two-
dimensional B-mode ultrasound image; 

• Stage II: tracing of the LI/MA wall boundaries in the ROI 
of the recognized CA. These two stages cannot be 
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independent from each other.  
The majority of the algorithms proposed in literature for the 
automated segmentation of the CA in ultrasound images 
require a certain degree of user-interaction, which precludes 
real complete automation. Some recent completely 
automated techniques that have been developed are based on 
sustain-attack filters and multi-scale barycenter filters [2], on 
the use of a Hough transform [3] and on combining dynamic 
programming and cubic spline [4]. However, all these 
automated techniques were tested on relatively small 
datasets acquired by a single sonographer and by the same 
ultrasound scanner. Since in a real clinical application 
various aspects can introduce variability (i.e., noise, scanner 
gain settings, carotid morphology, the presence of normal 
and pathologic vessels), it is important to test automatic 
techniques on databases that are multi-institutional, multi-
ethnic, and multi-operator.   
This paper presents a completely user-independent Carotid 
Automated Double Line Extraction System using Edge Flow 
(CADLES-EF) algorithm, which performs both Stages I and 
II. Starting from the ultrasound image, the algorithm first 
segments the distal border of the CA and then performs the 
automatic detection of the LI and MA interfaces. Neither of 
these processes requires any user interaction. The first part 
of our new algorithm is based on scale-space multi-
resolution analysis while the second part is based on flow 
field propagation.  

II. ARCHITECTURE OF CADLES-EF 
CADLES architecture uses a combination of 

multiresolution and Edge-Flow for our smart automated 
protocol. ADF tracing adapts multiresolution scale space-
based approach, while LI and MA border segmentation uses 
Edge-Flow model. Strong LI and strong MA edges are first 
detected and then refined to yield final LI and MA contours. 
Combining both strategies, distal (far) double lines (LI and 
MA) are extraction and IMT estimated. 

A. Stage-I: Far Adventitia Tracing 
Starting from the automatically cropped image (Figure 1.A), 
the automated Stage-I is composed of the following stages: 
• Step 1: Fine to Coarse Down-sampling. The image is first 

down-sampled by a factor of two (Figure 1.B) adopting a 
bi-cubic interpolation.  

• Step 2: Speckle reduction. Speckle noise is attenuated 
using a first-order local statistics filter (called lsmv by the 
authors [5]), which has given the best performance in the 
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specific case of carotid imaging. 
• Step 3: Higher order Gaussian derivative filter. The 

despeckled image is then filtered using a 35x35 pixels 
first-order derivative of a Gaussian kernel. The scale 
parameter of the Gaussian derivative kernel is taken 
equal to 8 pixels. This value is chosen because it is equal 
to half the expected dimension of the IMT value in an 
original fine resolution image, since an average IMT 
value equal to 1 mm corresponds roughly to about 16 
pixels in the original image scale and therefore 8 pixels 
in the down-sampled image. The white horizontal stripes 
in Figure 1.D show the proximal (near) and distal (far) 
adventitia layers. 

• Step 4: Automated Far Adventitia (ADF) tracing. Figure 
1.E shows the intensity profile of one column (from the 
upper edge of the image to the lower edge of the image) 
of the Gaussian filtered image. The proximal (near) and 
distal (far) walls are identifiable as intensity maxima 
saturated to 255. A heuristic search is used to 
automatically trace the profile of the distal (far) wall. 
This search starts from the bottom of the image and 
searches for the first white region consisting of at least 6 
pixels. The deepest point of this region (i.e. the pixel 
with the highest row index) marks the position of the far 
adventitia ADF layer on that column. The ADF profile 
that is found is then up-sampled to the original scale 
(Figure 1.F). 

B. Stage-II: Edge-Flow model (Strong LI/MA Edgs) 
A Guidance Zone is traced starting from the ADF profile 

and by extending it 50 pixels above, to comprise the distal 
wall. 

The Edge Flow algorithm, originally proposed by Ma and 
Manjunath [6], facilitates the integration of different image 
attributes into a single framework for boundary detection 
and is based on the construction of an Edge Flow vector 
F(s,θ )  defined as 

F(s,θ) = F[E(s,θ),P(s,θ),P(s,θ + π )] (1) 
where:  

• E(s,θ ) is the edge energy at location s along the 

orientation θ; 
• P(s,θ ) represents the probability of finding the image 

edge boundary if the corresponding Edge Flow “flows” 
in the direction θ; 

• P(s,θ + π ) represents the probability of finding the 
image edge boundary if the Edge Flow “flows” 
backwards, i.e., in the direction θ + π . 

Considering the original image I(x,y) at a certain scale σ, 
Iσ (x, y) is obtained by smoothing the original image with a 
Gaussian kernel Gσ (x,y). The intensity Edge-Flow energy 
E(s,θ ) at scaleσ, defined to be the magnitude of the 
gradient of the smoothed image Iσ (x, y) along the 
orientationθ, can be computed as 

E(s,θ) =| I(x,y)*GDσ ,θ | (2) 
where s is the location (x,y) and GDσ ,θ  is the first-order 

Gaussian Derivative along θ. This energy indicates the 
strength of the intensity changes. To compute P(s,θ ), two 
possible flow directions (θ and θ + π ) are considered for 
each of the edge energies along the orientation θ at location 
s. The prediction error toward the surrounding neighbors in 
these two directions can be computed as: 

Error(s,θ ) = | Iσ (x + d cosθ, y + d sinθ) − Iσ (x, y) |
= | I (x, y)* DOOGσ ,θ (x, y) |

 
(3) 

where d is the distance of the prediction and it should be 
proportional to the scale at which the image is being 
analyzed. DOOGσ ,θ (x, y)  indicates the Difference-of-offset-
Gaussian. The probabilities of Edge-Flow direction are then 
assigned in proportion to their corresponding prediction 
errors, due to the fact that a large prediction error in a certain 
direction implies a higher probability of locating a boundary 
edge in that direction: 

P(s,θ ) =
Error(s,θ)

Error(s,θ ) + Error(s,θ + π )
 (4) 

The texture Edge-Flow can be computed with the same 
technique as the Intensity Edge-Flow, starting from a Gabor 
decomposition of the image at the scale σ. 

Fig. 1. CADLES-EF procedure for ADF tracing. (A) Original cropped image. (B) Downsampled image. (C) Despeckled image.
(D) Image after convolution with first-order Gaussian derivative (sigma = 8). (E) Intensity profile of the column indicated by the 
vertical dashed line in panel D. (ADF indicates the position of the far adventitia wall). (F) Cropped image with far adventitia 
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Finally, the Edge Flows obtained from the two different 
types of image attributes can be combined: 

E(s,θ) = Ea (s,θ)
a∈A
∑ ⋅ w(a)    ,   w(a) =1

a∈A
∑  (5) 

P(s,θ) = Pa (s,θ )
a∈A
∑ ⋅ w(a) (6) 

where Ea (s,θ ) and Pa (s,θ) represent the energy and 
probability of the Edge Flow computed from the image 
attributes a (in our case, intensity and texture). w(a) is the 
weighting coefficient among various types of image 
attributes. 

The vector sum of the Edge Flows with their directions 
in the identified range is what defines the final resulting 
Edge Flow and is given by: 

F(s) = E(s,θ)⋅ exp( jθ)
Θ(s)≤θ ≤Θ(s)+π
∑  (7) 

where F(s) is a complex number whose magnitude 
represents the resulting edge energy and whose angle 
represents the flow direction. 

Once the Edge-Flow F(s) of an image is computed, 
boundary detection can be performed by iteratively 
propagating the Edge-Flow and identifying the locations 
where two opposite direction of flows encounter each other. 
The local Edge-Flow is then transmitted to its neighbor in 
the direction of flow if the neighbor also has a similar flow 
direction. Fig. 2.A shows an example of an output image 
from the Edge Flow algorithm, whereas fig. 2.B shows this 
output binary image overlaid on the original image. Clearly, 
Edge-Flow over-segments the image. 

C. MA Edge refinement by Labeling/Connectivity 
Three main challenges must be faced in presence of over-

segmentation (see fig. 2.B): 
1. removing the incorrect edge objects outside the region 

of interest; 
2. removing the small edge objects in the region of 

interest; 
3. connecting chunks edge objects. 

The solution to challenge (1) is simply the deletion of all 
the edge objects in the output image that are not included in 
the Guidance Zone. 

The solution to challenge (2) requires the definition of a 
small edge object. Small edge objects around the ROI are 
defined as those that have an area ratio below a limit φ 
when compared to the totality of the edge objects of the 
image. The area ratio is defined by the following equation: 

AreaRatio =
AreaEdgeObject

AreaAllEdgeObjects

≤ φ ⇒ SmallEdgeObject (8) 

Our experimental data showed that φ=0.1 is an optimal 
value to guarantee the rejection of the small edge objects. 

The solution to challenge (3) is based on the identification 
of those chunks, which can be linked to form the final MA 
edge object. The MA segment is first initialized as being the 
edge object with the highest pixel row index. The remaining 
small edge objects are scanned one by one and are assigned 
to the MA edge object if they are located on the MA 
boundary (intensity check) and close and aligned to the MA 
edge object (geometrical check). 

D. LI Edge refinement using MA constraints 
The post-processing of the LI edge is more complicated 

with respect to that of MA. Beside the problem of over-
segmentation (i.e., of the LI profile broken into chunks), 
there is the problem of false edge objects located in the 
vessel lumen (i.e., above LI) and in the media layer (i.e., in 
between MA and LI). This is mainly due to blood 
backscattering in the CA lumen. 

Each LI object is validated through a heuristic procedure 
that rejects edge objects made of too dark pixels (since 
possibly located in the CA lumen) and of too bright pixels 
(since possibly located in the media layer). 

Then each LI edge object is compared to the MA profile: 
all the edge objects that are closer than 0.3 mm and farther 
than 1.5 mm are discarded (the values have been derived by 
considering the standard IMT value of 0.8 mm). The 
remaining edge objects are connected to form the final LI 
boundary.  

Fig. 3 shows samples of CADLES-EF segmentation. 

III. RESULTS AND DISCUSSION 
We tested CADLES-EF on a 300 images database, which 

is multi-institutional, multi-ethnic, multi-scanner, and multi-
operator. One-hundred images were acquired at Cyprus 
Institute of Neurology and Genetics (Nicosia, Cyprus), 200 
were acquired at the Neurology Division of the Gradenigo 
Hospital (Torino, Italy). Pixel density was equal to 16.67 
px/mm and 16 px/mm for Cyprus and Italy images, 
respectively. Demographics of the patients can be found in 
previous works [5, 7]. 

CADLES-EF correctly identified the carotid artery by 
tracing of the ADF profile in all 300 images (100% success 
rate). The average distance between CADLES-EFLI tracings 
and GTLI tracings was 0.475±1.660 mm, which of the MA 
profiles was 0.176±0.202 mm. The average IMT 
measurement bias was equal to 0.043±0.189 mm, with a 
tendency towards overestimation of IMT (see Table I). The 
Figure-of-Merit was equal to 94.8%. 

Fig. 2. (A) Binary edge output from the Edge Flow 
algorithm. (B) Superposition of the binary edges on 
the corresponding grayscale carotid Guidance Zone. 
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CADLES-EF was compared to two previously developed 
automated techniques called CALEXia [7, 8] and CULEXsa 
[7, 9]. The overall FoM for CALEXia was found to be equal 
to 84.7%, while for CULEXsa it was equal to 91.5%.  We 
found that CALEXia underestimates the IMT, while 
CULEXsa tends to underestimate the IMT value in a manner 
more similar to CADLES-EF (even though with slightly 
more marked tendency towards underestimation).  
The major advantage of this new technique is versatility: 
unlike CULEXsa, the most performing benchmarking 
technique, CADLES-EF always reached convergence. Being 
based on snakes, CULEXsa showed convergence issues 
when in presence of small plaques or of deformed vessels, 
due to the difficulty of fine-tuning the snake tension and 
elasticity. As a result, CULEXsa could not process 14 
images out of 300. CADLES-EF offered satisfactory LI/MA 
segmentation performance and proved effective in following 
any vessel morphology, without changing any system 
parameters, unlike CULEXsa. Compared to CALEXia, 
CADLES is more robust with respect to image noise. 

The computational time was comparable. Using 
MATLAB on a dual 2.5 GHz PC equipped by 8 MB of 
RAM, CADLES-EF took 60 s compared to 50 s for CULEX. 
CALEXia was the fastest at 3 s. 
 
TABLE I – COMPUTER ESTIMATED IMT AND GROUND-TRUTH IMT FOR THE 

THREE TECHNIQUES. LAST COLUMN IS FIGURE-OF-MERIT. 
 Estimated IMT 

(mm) 
GT IMT 

(mm) FoM 

CADLES-EF 0.861±0.276 0.818±0.246 94.8 % 
CALEXia 0.746±0.156 0.880±0.164 84.7% 
CULEXsa 0.805±0.248 0.879±0.237 91.5 % 

IV. CONCLUSION AND FUTURE PERSPECTIVES 
The CADLES-EF algorithm we developed can be 

proficiently used for the segmentation of B-mode 
longitudinal ultrasound images of the carotid wall. It is 
completely user-independent: the raw US image can be 
completely processed without any interaction with the 
operator.  It is based on a scale-space multi-resolution 

analysis to determine initial location of the carotid artery in 
the image and then using the flow field propagation based on 
intensity and texture to determine strong edges, which are 
then classified and refined to provide the final contours of 
the LI and MA interfaces.  

From a clinical point of view, the algorithm traces the 
boundaries of both the intima and media layers, which can 
be used for measurements. We are currently developing a 
multi-institutional database for a comprehensive study to 
validate the clinical applicability of our work. 
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Fig. 3. Examples of CADLES-EF performance on normal but non-horizontal carotid artery and carotid artery in the presence of 
jugular vein.  First Column: the original cropped images; Middle Column: ADF profile (stage-I output) overlaid on the 
original cropped grayscale images; Last Column: LI and MA borders estimated using CADLES-EF algorithm overlaid on the 
original grayscale images. 
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