
  

  

Abstract—Deep brain stimulation (DBS) has been applied in 
more than 70000 patients worldwide during the last two 
decades. The main target is the subthalamic nucleus (STN) for 
the treatment of motor complications in late stage Parkinson’s 
disease (PD). Positive results in 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-treated non-human primates have 
set the grounds for its successful translation to PD patients.  
Since then, this model has allowed gaining significant insights 
in the underlying mechanisms of action of DBS and is currently 
being used for the development of new stimulation techniques. 
Altogether, this underpins the high potential of this preclinical 
model for future translation of DBS research in PD. 

I. INTRODUCTION 
EEP brain stimulation (DBS) has been applied in more 
than 70000 patients worldwide during the last two 

decades. DBS is mainly applied in the subthalamic nucleus 
(STN) in Parkinson’s disease (PD) [1-3], the globus pallidus 
internus (GPi) in dystonia [4] and PD [2], and the ventral 
intermediate nucleus of the thalamus (VIM) in essential 
tremor [5]. Other nuclei e.g. the pedunculopontine (PPN) [6, 
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7] and the centromedian-parafascicularis nucleus (CM-Pf) 
[8] are currently being explored for PD. DBS is also 
assessed in other indications e.g. treatment refractory Gilles 
de le Tourette syndrome [9] and depression [10].  

STN-DBS is successful in the management of late stage 
Parkinson’s disease (PD)[1-3]. However, in line with the 
progressive nature of PD, the therapeutic effect on motor 
signs decreases over time [11, 12], some patients have an 
unsatisfactory outcome despite proper electrode placement 
and side effects such as worsening speech, reduced verbal 
fluency and weight gain affect an important number of 
patients. Some of these side effects may result from current 
spread to remote structures. Techniques that restrain the 
volume of the tissue activated may therefore allow reducing 
or avoiding them. Another reason of current limitations may 
be that stimulation parameters of classical DBS are set 
according to empirical algorithms [13] which do not take 
advantage of the latest discoveries of PD pathophysiology 
such as abnormal oscillatory activity in the basal ganglia 
network [14]. Altogether, this underlines that continued 
efforts are needed to overcome current limitations with 
available DBS techniques. 

Positive results on motor control in 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-treated non-human 
primates have set the grounds for the successful translation 
of STN-DBS to PD patients in the early nineties [15]. Since 
then, this model has allowed gaining significant insights in 
the underlying mechanisms of action of DBS and is 
currently being used for the development of new stimulation 
techniques (cf. below). Altogether, this underpins the high 
potential of this preclinical model for future translation of 
DBS research in PD.  

II. TECHNICAL CONSIDERATIONS 

A. The MPTP non-human primate model of parkinsonism 
Following the observation that MPTP can induce 
parkinsonism in humans [16], different MPTP-treated 
models were established in non-human primates. They are 
based on the injection of the toxin either in the muscle, the 
carotid artery or intravenously. Depending on the procedure, 
lesioning of the nigrostriatal dopamine system occurs more 
or less quickly (for review see [17]). MPTP-treated non-
human primates reproduce clinical hallmark features of PD, 
i.e. bradykinesia and rigidity, while only few species such as 
green monkeys display tremor. 
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In recent years, we have proposed a progressive model of 
parkinsonism, where animals receive daily injections of 
small amounts of MPTP until developing motor symptoms 
[18, 19]. This model allows obtaining a more than 95 
percent bilateral depletion of striatal dopamine.  

B. Stimulation electrodes and devices  
A scaled-down version of human DBS macroelectrodes 
(Model 3387, Medtronic Inc., Minneapolis, MN; four 
contacts with a diameter of 0.76 mm, a thickness of 0.50 mm 
and a separation between contacts of 0.50 mm, NuMED Inc, 
Hopkinton, NY) is commercially available. Contact 
thickness and the separation between contacts can be further 
customized upon request. Proper placement of the 
stimulation electrodes in the STN can be achieved under 
guidance by stereotactic ventriculography, intraoperative 
extracellular recordings and postoperative x-rays. 
Furthermore, a stereotaxic non-human primate atlas of the 
basal ganglia is available [20] allowing the preoperative 
calculation of the stereotaxical coordinates of the stimulation 
electrodes.  

Once in place, the stimulation electrodes can be connected 
to the same implantable pulse generator that is used in the 
clinical setting. Another possibility is to perform stimulation 
with an external device while the animal is seated in a 
primate chair. A detailed description of the surgical 
procedure is provided elsewhere [21]. 

C. Clinical outcome measures  
As in the clinic, the severity of PD motor symptoms can be 
monitored by a video-taped assessment of disability scores 
by experienced and blinded scorers. Ratings in MPTP-
treated non-human primates are performed by using an 
established scale that is inspired by the human Unified 
Parkinson’s Disease Rating Scale [22]. The scale assesses 
tremor, posture, general activity, vocalization, freezing, 
rigidity and slowness of arm movements. The maximum 
disability score is 25. A score of 0 corresponds to a normal 
animal and a score above 6 to a parkinsonian animal. During 
the progressive induction of parkinsonism, MPTP injections 
are usually stopped after the disability score reaches 8 
points. 

Another possibility is the use of an automatic assessment 
of locomotor activity as endpoint for preclinical studies [23]. 

III. VALUE OF THE MPTP MODEL FOR TRANSLATING DBS 

A. Effect of DBS on basal ganglia activity  
The overall mechanisms of action of DBS remain 

incompletely understood. Several studies in MPTP-treated 
non-human primates and PD patients have reported 
consistent changes in firing activity of STN and GPi neurons 
during STN-DBS [24-28]. According to these studies, firing 
rate of STN neurons decreases while those of GPi neurons 
increases during STN-DBS. In both, MPTP-treated non-
human primates and PD patients, time-locked responses to 
STN stimulation pulses have been observed in pallidal 
neurons [27-29].  

Beyond these findings, data from MPTP-treated non-
human primates have helped to model the contribution of 
STN projection neurons and fibers of GPi and internal 
capsule to overall pallidal activity changes during STN-DBS 
[29, 30]. Clinically effective STN-DBS activated STN 
projection neurons in both investigated animals, and GPi 
and internal capsule fibers in one animal. Time-locked 
responses to STN stimulation differed between animals 
according to the respective contribution of the involved 
neural elements, i.e. STN projection neurons and adjacent 
fibers of passage. An analysis of mean firing rate and firing 
pattern also showed differences between animals with 
significant changes in one although motor symptoms were 
improved in both [30]. Altogether, this suggests that 
disrupting abnormal basal ganglia activity is the most 
important action of STN-DBS which may be achieved via 
STN projection neurons or adjacent fibers of passage. 
Another possibility may be antidromic activation of cortical 
areas through stimulation of cortico-subthalamic fibers as 
has recently been suggested [31]. 

In recent years, abnormal synchronization in the basal 
ganglia network has been proposed as a key feature of PD. It 
has been found in MPTP-treated non-human primates and 
PD patients [14, 24, 32-38]. A few studies have assessed the 
effect of STN-DBS on synchronized activity in the basal 
ganglia. Findings were again consistent between PD patients 
and MPTP non-human primates showing that STN-DBS 
decreases abnormally synchronized activity [24, 39]. 

While recordings in patients are often limited by the 
short time that offers the surgical procedure, the MPTP-
treated non-human primate model provides a unique 
opportunity to study the mechanisms of action of DBS. 
This in underpinned by previous studies that have 
allowed gaining significant insights in the mechanisms of 
action of DBS and the interplay between the different 
neural elements that are believed to mediate the 
beneficial effects of STN-DBS. Furthermore, in contrast 
to rodents, findings in MPTP-treated non-human 
primates can easily be related to clinical outcomes. 

IV. NEW STIMULATION TECHNIQUES 

A. Coordinated reset stimulation 
Changes in synaptic connectivity in the dopamine depleted 
state may underlie the appearance of abnormal synchronized 
activity in the basal ganglia [40]. Based on a stochastic 
phase resetting theory [41], in a number of generic as well as 
physiology motivated theoretical models, we have shown 
that synaptic connectivity can be reshaped by using novel 
desynchronization techniques [42-44]. Accordingly, 
coordinated reset stimulation (CR), i.e. brief high-frequency 
pulse trains delivered via different sites at different times, 
enables the network to unlearn strong synaptic interactions. 
A brief high-frequency pulse train is a weak stimulus which 
does not block neuronal firing and which is unable to 
provide complete desynchronization during stimulus 
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delivery. It rather resets the phase of the stimulated neurons. 
Since brief high-frequency pulse trains are applied at 
different sites and times, the population splits into several 
subpopulations followed by desynchronization of the 
population activity. Moreover, desychronization continues 
even though stimulation is turned off. 

According to theoretical considerations, CR stimulation is 
the most effective when (i) the stimulation frequency is 
close to the frequency of abnormal basal ganglia oscillations 
[42, 45] and (ii) the volume of tissue activated by the brief 
high-frequency pulse trains that are delivered through the 
different electrode contacts is not overlapping [46]. 

As yet, a clinical application of CR stimulation is limited. 
On the one hand there is no approved implantable CR 
device. On the other hand in a study in externalized patients 
the window between surgery and implantation is short (1 
week), because of the risk of infection and ethical concerns.  

Because of these limitations, we have assessed the effects 
of external CR (an implantable device is under development 
and will soon be tested in vivo) in three MPTP-treated non-
human primates with a portable stimulator fulfilling all 
medical device requirements for a study in humans and 
capable of standard DBS and CR stimulation [47]. Three 
protocols were tested in each animal: (i) classical DBS, (ii) 
CR with “DBS-like intensity” and (iii) CR with low 
intensity.  

CR consisted in the random application of brief high-
frequency pulse trains (5 pulses with an intraburst frequency 
of 150 Hz, i.e. the duration of each train was 33.3 ms) 
through the 3 lower contacts of the scaled-down version of 
the human DBS macroelectrode. Pulse width was set at 
120µs. The delay between subsequent brief high-frequency 
pulse trains was 47.6 ms corresponding to a CR stimulation 
frequency of 7 Hz which is close to the frequency of 
abnormal oscillations in MPTP treated non-human primates 
[24]. Each stimulation cycle included three brief high-
frequency pulse trains that occurred with a delay of 47.6 ms, 
i.e. the total duration of each cycle was 142.8 ms. Three 
cycles of CR were followed by 2 cycles without stimulation.  

In each protocol, stimulation was applied for 2 hours over 
5 days. Locomotor activity was assessed the days of 
stimulation (after the end of external CR or DBS) and during 
the post-stimulation period as long as it was different from 
baseline. STN-DBS increased locomotor activity the days of 
stimulation corresponding to a transient after-effect as seen 
in PD patients. CR with “DBS-like intensity” had a small 
effect on locomotor activity the days of stimulation which 
became significant during the 5 days after the end of CR. 
CR with low intensity significantly improved locomotor 
activity the days of stimulation. A significant effect persisted 
for 35 days. 

Altogether, our preliminary data suggest that CR, an 
innovative form of DBS, improves locomotor activity in 
MPTP treated non-human primates. As predicted [46], CR 
with low intensity seems to be more effective than those 
with “DBS-like intensity”. Compared to classical DBS, CR 
had sustained effects on motor symptoms suggesting the 
induction of plastic network changes. An ongoing project in 

MPTP-treated non-human primates will allow assessing the 
effect of CR during stimulation. 

In conclusion, the MPTP model of parkinsonism has 
proven its usefulness in translating DBS research to PD 
patients. New stimulation techniques are currently being 
explored in this model and will soon head to the clinic if 
preliminary preclinical results are confirmed. 
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