
  

  

Abstract— The current state of neuromodulation can be 
described using a classical dynamic control framework such 
that the nervous system is the classical “plant”, the neural 
stimulator is the controller, tools to collect clinical data are 
the sensors, and the physician’s judgment is the state 
estimator. This framework characterizes the types of 
opportunities available to advance neuromodulation. In 
particular, technology can address two dominant factors 
limiting the performance of the control system: 
“observability,” the ability to observe the state of the system 
from output measurements, and “controllability,” the ability 
to drive the system to a desired state using control 
stimulation. Improving sensors and stimulation methods are 
necessary to address these factors.  Equally important in 
achieving the desired therapy outcome is improving state 
estimation by understanding the neural processes underlying 
diseases. Technological advancements in neuromodulation 
using the control framework enable not only improvements 
in therapies for neurologic diseases but also research into the 
dynamic properties of the nervous system and mechanisms 
of action of therapies. In this paper, we provide an overview 
of the control system framework for neuromodulation, its 
practical challenges, and two investigational devices 
applying this framework for specific applications. To help 
motivate future efforts, we describe a chronically 
implantable, low-power neural stimulation system, which 
integrates sensing, stimulation, and state estimation. This 
research system has been implanted and used in an ovine to 
address novel research questions. 

I. INTRODUCTION 
NNOVATION in neuromodulation can be facilitated by 

modeling the interaction between device and the nervous 
system in a dynamic control framework. Progress has 
already taken place in sensing [1],[2], improving therapy 
delivery [3],[4], and understanding the pathophysiology of 
the disease state [5]-[7]. We argue that dynamic control 
theory provides a mature paradigm to further advance the 
field of neuromodulation (Fig. 1). A classical control 
paradigm consists of a “plant” (the nervous system), the 
controller (neural “stimulator”), the sensor (clinical data), 
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and the state estimator (patient assessment). In this context, 
the controller consists of any device or method that 
modulates the activity of a set of neurons. We call these 
“stimulators” for simplicity. Currently most stimulators 
operate in an open-loop fashion, requiring an operator to 
change therapy settings. Clinical observations and tests 
serve as sensors to generate the data used by physicians to 
assess the patient. In the future, neuromodulation aims to 
improve patient outcomes with ongoing therapy adjustment 
that minimizes clinical and patient burden. In a dynamic 
control framework, this goal points toward the following: 

• Define the patient’s desired state using objective 
criteria (Fig. 1a). 

• Improve controllability through more sophisticated 
neural stimulator parameters, such as lead and 
electrode selection, field steering, selective 
stimulation, stimulation frequencies and amplitudes, 
and  understand how these parameters affect the 
desired state (Fig. 1b);  

• Understand the nervous system and the 
pathophysiology of diseases as the foundation for 
realizing a control strategy (Fig. 1c). 

• Improve disease state observability through 
measurement of relevant biomarkers (Fig. 1d) and 
accurate estimation of the patient state (Fig 1e).  

This framework allows neuromodulation to leverage well-
understood dynamic control principles. Technologies should 
be used to minimize time delay in the control loop by 
providing timely feedback and control automation from 
sensing and state estimation. We also need to clearly 
understand the sensing-stimulation interaction and minimize 
the impact of direct feedthrough in the control loop. In 
addition, healthcare providers will be critical to optimize 
control parameters to ensure judicious use of the therapy for 
patients.  

 
Fig. 1. The dynamic control framework for neuromodulation. a. Desired 
disease state is the reference signal, b. neural “stimulator” is the controller, 
c. the nervous system is the plant, d. tools to collect clinical data are the 
sensors, and e. patient assessment is the state estimator. In current clinical 
practice, the difference between a physician’s estimate of the desired state 
and the patient assessment drives parameter changes in the neural 
“stimulator”.  
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The rest of the paper is structured as follows. Section II 

will discuss the challenges in each aspect of the dynamic 
control system in Fig. 1. Section III will review two 
investigational devices using this dynamic control 
framework. Section IV describes our development of an 
implantable platform system for chronic neural sensing, 
stimulation, and state estimation. Section V will provide 
examples of utilizing this system to address novel research 
questions. Section VI discusses future applications of this 
technology approach in neuromodulation. 

II. CHALLENGES IN THE DYNAMIC CONTROL SYSTEM 

A. Desired State (Reference Signal) 
The desired state, analogous to the reference signal in the 

control paradigm, represents the state of the neural network 
that the clinician would like to achieve with optimal therapy. 
For example, a patient with Parkinson’s disease desires to be 
in the “on” state, meaning that the patient is optimally 
controlled with medications and/or deep brain stimulation 
(DBS). An epileptic patient may have a desired state of 
“homeostasis” in which neural activity is free of the ictal 
neural state. Precise definition of the desired state continues 
to be a challenge. Currently, the desired state is largely 
subjective, changes over time for a given patient, and varies 
between patients. 

Improved understanding of neurologic diseases will 
provide more objective measures of defining the desired 
state. Recent research in Parkinson’s disease [1], epilepsy 
[5], and depression [6] has revealed possibilities for defining 
and quantifying these signals.  

B. Neural “Stimulator” (Controller) 
Current neural “stimulators,” which are effectively 

electric pulse generators, have an associated set of 
parameters, such as stimulation parameters (i.e., frequency, 
amplitude, and pulse width) and electrode location. 
Currently, the physiologic relationships between stimulation 
parameters and the nervous system are not well understood, 
leading to parameter selection procedures that may not 
ensure maximal patient benefit. Increasingly complex 
therapy delivery paradigms (such as greater number of 
electrodes [8] and wider parameter ranges) will further 
complicate parameter selection, and efficient parameter 
selection methods will be needed for optimal therapeutic 
benefit.  

One method of improving feedback on parameter 
selection involves visualizing the volume of tissue activated 
(VTA) of neural stimulation (Fig. 2) [9]. This approach 
allows visualization of the anatomical regions receiving 
stimulation to optimize therapy to the desired targets. VTA 
serves as a useful tool to investigate the relationships 
between stimulators, stimulation parameters, and the 
structure and function of the nervous system.  

Another set of challenges relates to the delivery of 

therapy. Currently, neural “stimulators” and their associated 
electrodes are limited in how they change neural electrical 
potentials. Stimulation volume is imprecise compared to the 
scale of neurons, and control over neural membrane 
potentials is imprecise compared to physiological membrane 
potentials. Advancements in electrode technology will 
enable more specific neural stimulation [8]. In the future, 
neural “stimulators” may utilize cellular and genetic 
techniques thereby enabling more nuanced mechanisms for 
modulating neural activity. One example is optogenetics, 
which uses gene therapy to allow unprecedented control 
over neural electric potentials [5]. 

 
Figure 2: Visualization toolkit to enable clinicians to provide visual 
feedback in parameter selection. Examples of Visualization feature set:  A) 
3D anatomy of the atlas (not patient-specific) with a lead located in a 
default position and a VTA B) zoom-in onto STN including the volume 
intersection of VTA and STN C) the same atlas represented as 2D outline 
on the top of the atlas MRI (not patient MRI) 

C. Nervous System (Plant) 
The representation and temporal dynamics of the disease 

state in the nervous system, or “plant,” are important in 
understanding the relationship between “stimulator” and 
observed sensor data. However, dynamic system 
identification to describe the nervous system and its non-
linear relationship to therapy remains a formidable 
challenge. Neural models by Hahn and McIntyre [10] and 
Tass et al [7] demonstrate examples of using physiology 
based representations to help describe the dynamic effects of 
neural stimulation.  

Improved understanding of the nervous system at the 
cellular and network levels together with increased 
computing power may improve the ability to characterize the 
plant and enable robust and precise neural stimulation and 
state observation strategies.  

D. Clinical Data (Sensors) 
Sensors are a critical element to collecting physiological 

data from the patient. As sensors become smaller, cheaper, 
and more power efficient [11] it is becoming increasingly 
important to develop sensors specific to disease states. 
Chronic neural signals are a natural place to look for 
biomarkers of neurologic diseases. Work in Parkinson’s 
disease has implicated the amplitude of neural activity in the 
beta band (10-30 Hz) in parts of the basal ganglia to be 
related to the degree of movement dysfunction. In these 
patients, beta band amplitude has been estimated to be on 

672



  

the order of 1 μVRMS in the local field potential (LFP) [1], 
which is more than 100 times smaller than cardiac 
pacemaker signals. This poses significant technical 
challenges to developing sensors aimed at resolving this and 
other important signals [8]. In addition to neural signals, it 
may be possible to infer disease state information from other 
physiologic markers (for example, limb movement, heart 
rate, respirations, and others) using sensors like 
accelerometers.   

E. Patient Assessment (State Estimator) 
In neuromodulation, state estimation refers to the process 

of translating sensor information into an estimate of the 
patient state. In classical control theory, there are many ways 
to perform state estimation including the well-known 
Kalman filters and support-vector machines. Challenges to 
getting good state estimation fall into several categories.  
First, there is not sufficient information about the 
physiology and pathophysiology of the nervous system to 
understand the relationship between sensed biomarkers and 
the disease state. This understanding is fundamental to 
adequately capture the complex relationships between 
sensor measurements and the desired disease state in order 
to deliver optimal therapy. Second, the process of data 
collection and algorithm deployment in the flow of patient 
care is not well characterized. Third, limited understanding 
of the “true” patient state complicates the process of state 
estimator validation.  

III. CURRENT STATE OF DEVICES WITH A DYNAMICAL 
CONTROL FRAMEWORK 

Evidence for the application of the dynamic control 
framework can be found in two investigational technologies: 
the Medtronic RestoreSensorTM system, a spinal cord 
stimulator CE-marked for chronic pain and the Neuropace 
RNS® system, an implantable investigational device for 
treating epilepsy.  Both technologies have ongoing research 
trials. 

RestoreSensorTM utilizes the control theory framework to 
maintain a therapeutic level of stimulation by using 
accelerometer data (i.e., sensor) to estimate body posture 
and activity (i.e., state estimator) and adjusting stimulation 
amplitude accordingly (i.e., neural stimulator). Stimulation 
is specific to the individual patient and the patient’s posture. 
This technology is useful to ensure constant therapeutic 
parasthesia by enabling real-time stimulation changes that 
account for variations in electrode-to-spinal cord position.  

The RNS® system utilizes a control theory framework to 
treat epilepsy by using neural activity (i.e., sensor) to 
estimate the neural state of the patient (i.e., state estimator), 
and deliver therapy accordingly (i.e., neural stimulator). This 
therapy may be useful for a large number of patients for 
whom pharmacologic treatment inadequately controls their 
epilepsy. 

These systems demonstrate proof of concept for using the 

dynamic control framework for specific applications.  
However, the fundamental unanswered questions of 
neurological diseases call for a flexible general platform to 
enable discoveries for therapy translation.  

IV. NEXT GENERATION RESEARCH PLATFORM 
Given the need for this basic research, our group has been 

developing a general prototype platform for investigating 
the dynamics of the nervous system (Fig. 3). With the 
constraint of ensuring standard-of-care therapy, the platform 
was built on an existing neural stimulator with added 
sensors for recording biopotentials (i.e., LFPs), movement 
(i.e., accelerometer), and patient events (i.e., patient-defined 
button presses). The sensors are used as inputs to the user-
defined state estimator, which contains two discrete stages 
of processing: a linear discriminator (LD) front-end and a 
derived statistics back-end.  

Fig. 3 shows the information flow for the system in its 
typical mode of operation. The device records and transmits 
sensor information for analysis by the clinician-researcher. 
Sensor data and clinical judgment are used to create a state 
estimator that identifies patient events (for example, the 
presence of seizures). The LD is generated offline by 
calculating an optimal linear boundary between vectors of 
separable biomarkers. The derived statistics back-end uses 
user-selected parameters to determine patient state and 
initiate triggers. The back-end is meant to filter the results of 
the LD to balance the trade-off between sensitivity, 
specificity, and detection latency. Triggers can initiate 
device functions such as starting high-fidelity neural data 
recording. In the future, the state estimator can also be used 
to initiate or change therapy. Finally, triggers can be 
reviewed by the clinician-researcher to validate and improve 
the state estimator.  

 
Fig. 3. A signal analysis flow model for the research platform to study and 
treat neurologic diseases. The research-enabled stimulator contains sensors 
to record biopotentials, acceleration, and patient triggers. A linear 
discriminator with derived statistical back-end triggers events, which can be 
used to validate the system.  

V.  RESEARCH PLATFORM ENABLES SCIENTIFIC DISCOVERY 
Early deployment of the prototype platform has already 

enabled the research discovery process. For example, the 
platform has been implanted and tested in an ovine with 
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leads placed in the hippocampus (HC) and anterior nucleus 
of the thalamus (ANT) [12].  Each lead was capable of both 
sensing and stimulation. The research system allowed 
investigators to stimulate the HC and simultaneously 
measure its effect on the neural network behavior.  Fig 4 
shows 4 bursts of HC stimulation at 120 Hz and between 2-
2.5V.  The research system revealed evidence of seizure-like 
activity during and after the second and fourth stimulation 
bursts. When stimulation is off, this activity can be observed 
as an after-discharge.  The after-discharge manifests in the 
time-domain as a signal with higher than baseline amplitude, 
and in the frequency domain as delta/theta-band activity. 
When stimulation is on, seizure activity cannot be readily 
resolved in time domain since stimulation has >4 orders of 
magnitude higher power than the seizure activity. However, 
our system can clearly capture this level of activity within 
the stimulation, as shown in the “chirp” in the beta 
frequency band. The beta activity during seizure is not 
stimulation artifact, since it was not present when 
stimulations of similar levels were delivered (i.e., it does not 
appear during the first and third stimulation bursts). This 
experiment demonstrates that our system can capture signals 
of frequency and magnitude of human epilepsy in a 
biological model even in the presence of stimulation. This 
capability can help reveal network dynamics that were 
previously masked by stimulation. 

 
Fig. 4. Time domain graph (top) and spectrogram (bottom) recorded in the 
HC, showing 4 stimulation bursts of increasing amplitude (1.75V, 2V, 
2.25V, and 2.5V) 120 Hz HC stimulation. Blue boxes highlight a 15-30Hz 
(beta band), red boxes highlight 0-6Hz (delta band), and green boxes 
highlight 5-7Hz (theta band).  

VI. TECHNOLOGY DRIVES ADVANCEMENTS IN 
NEUROMODULATION  

New technology provides the tools necessary to 
investigate the next frontiers of neuroscience research.  Our 
system allows researchers to chronically record and interpret 
neural activity in the presence of stimulation. This enables 
unprecedented study of neurological diseases. Current 
research in this field is limited by the capabilities of the 
state-of-the-art clinical recording technology, which largely 
restrict neural recording to the time during the surgical 

procedure. The latest work has allowed recording of neural 
local field potential signals 3-4 weeks post surgery [2] [13], 
but data collection was acute and restricted to the clinical 
environment. 

By contrast, new general research platform will allow 
non-invasive recording and data transfer of neural signals 
for months to years post-surgery in both clinical and 
ambulatory settings. This may enable characterization of 
robust biomarkers that can be used as the feedback signal in 
the control loop. Furthermore, such capabilities could be a 
key enabler in understanding the mechanisms of action and 
therapeutic effects of currently available therapies. In the 
area of urinary incontinence, for example, chronic sensing 
and state estimation may enable closed-loop neural 
stimulation that is tailored to a patient’s symptoms [14].  

The ability to chronically perform sensing and patient 
state estimation using neural and non-neural biomarkers 
allows the study of the nervous system through a dynamic 
control framework. This framework facilitates both research 
into neurological diseases as well as more sophisticated 
therapies. Ultimately, it may be possible to perform 
continuous patient state monitoring and deliver 
neuromodulation with shorter time delays, improved patient 
outcomes, and reduced patient and clinical burden. 
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