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Abstract— This paper presents a novel systematic approach
to the stability analysis of the cardiovascular (CV) baroreflex.
The proposed approach determines the equilibrium state and
the system stability in its neighbourhood with computational
efficiency, once the parameters of the CV baroreflex model are
specified for an individual. We first propose a linearization-
based analytical method for determining the equilibrium state
of the CV baroreflex. We then present a Lyapunov-based
systematic approach to analyze the system stability in the
neighbourhood of the equilibrium state. The results of simula-
tion experiments suggest that the performance of the proposed
approach is encouraging: it was able to accurately determine
the equilibrium state and quantify the stability of the CV
baroreflex. The proposed approach is also powerful in exploring
the relationship between the CV baroreflex stability and its
parameter configurations.

I. INTRODUCTION

In the cardiovascular (CV) baroreflex, the autonomic ner-
vous system (ANS) regulates blood pressure and heart rate
in the neighbourhood of a desired setpoint using a set of re-
ceptors and effectors [1], [2]. In this context, perturbations in
blood pressure, such as orthostatic hypotension and exercise,
are measured by the arterial baroreceptors and transmitted to
the ANS. Then, the ANS acts against these perturbations by
sending control commands to a set of effectors, including
sympathetic and parasympathetic reflexes on heart rate and
peripheral resistance, in order to maintain homeostasis [3]–
[5].

For a group of patients such as individuals with treatment-
resistant hypertension, it is crucial to maintain a certain
degree of stability margin in their cardiovascular system [6].
To make it possible to actively control the stability of the CV
system, it is important to predict the system’s transition to
instability in order to provide the patients with appropriate
preventive interventions. In order to determine appropriate
and effective interventions, it is desirable to identify the root
cause of the instability by unveiling the influence of the CV
baroreflex parameters on its stability.

The complex dynamic interactions among nonlinearities
and delays in the CV baroreflex may cause unstable be-
haviour that is not relevant to its normal regulatory task
[5]. For instance, it may incur an onset of oscillations in

This work was supported in part by the Institute for Computing, Informa-
tion and Cognitive System (ICICS) at the University of British Columbia.

P. Ataee and G.A. Dumont are with the Department of Electrical and
Computer Engineering, The University of British Columbia, Vancouver,
Canada. pedrama@ece.ubc.ca

Jin-Oh Hahn is with the Department of Mechanical Engineering, Univer-
sity of Alberta, Edmonton, Canada.

W.T. Boyce is with the Faculty of Medicine, The University of British
Columbia, Vancouver, Canada

blood pressure and heart rate. Indeed, it has been shown that
changes in the CV baroreflex parameters such as time delay
in afferent and/or efferent pathways may result in limit cycle
behaviour or even instability in the CV system [4].

In this paper, we present a novel systematic approach to
the stability analysis of the CV baroreflex. A unique strength
of the proposed approach is its capability to determine the
equilibrium states and the system stability in their neigh-
bourhood with computational efficiency. We first propose
a linearization-based analytical method for determining the
equilibrium states of the CV baroreflex. We then present a
Lyapunov-based systematic approach to analyze the system
stability in the neighbourhood of the equilibrium state. It is
demonstrated that the proposed approach can determine the
equilibrium state and quantify its stability very accurately.
This approach is also very powerful in identifying the root
cause of possible instability in the CV baroreflex, by virtue
of its capability to characterize the relationship between the
CV baroreflex stability and its parameter configurations.

II. ALGORITHM DEVELOPMENT

We first present a mathematical model of the CV barore-
flex described by a set of coupled nonlinear delay-differential
equations. Then a linearization-based analytical method to
estimate an equilibrium state (heart rate and blood pressure)
for a given CV baroreflex parameters (i.e. parameter config-
uration) is presented, followed by a novel Lyapunov-based
approach to analyze the stability of the CV baroreflex in the
neighbourhood of the estimated equilibrium state.

A. Mathematical Model

A large number of models have been developed to describe
the physiological behaviour of the CV baroreflex [5], [7], [8].
Recently [9], we proposed an improved model of the closed-
loop CV baroreflex based on the work of Fowler et al [8].
This model is a physiology-based model that is made up of
a set of coupled differential equations having nonlinear and
delayed dynamic interactions:

Ḣ(t) = βHTs − VHTp + δH
[
H0 −H(t)

]
(1a)

Ṗ (t) = − P (t)

R0
a(1 + αTs)Ca

+
H(t)∆V

Ca
(1b)

where H is heart rate, P is mean blood pressure, Ts =
1−σ

(
P (t− τ)

)
is the sympathetic tone, and Tp = σ

(
P (t)

)
is the parasympathetic tone with

σ(P ) = Tmin +
Tmax − Tmin

1 + e−αsp(P−Psp)
50 ≤ P ≤ 200. (2)
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Fig. 1. Linearization-based approximation of sigmoid function: examples;

and τ is the time delay associated with sympathetic pathway.
The definitions of the parameters, as well as a systematic
method to identify these parameters, can be found in our
previous work [9]. By substituting (2) into (1), it yields

Ḣ(t) = βH

[
1− σ

(
P (t− τ)

)]
− VHσ

(
P (t)

)
+ δH

[
H0 −H(t)

]
(3a)

Ṗ (t) = − P (t)

R0
a

(
1 + α

[
1− σ

(
P (t− τ)

)])
Ca

+
H(t)∆V

Ca
(3b)

In this study, we focus on the impacts of the high-
sensitivity parameters (Psp, VH , βH , α, and ∆V ; see Ataee
et al. [9]) on the stability of the CV baroreflex.

B. Estimation of Equilibrium States

Ḣ(t) = 0 and Ṗ (t) = 0 are satisfied at an equilibrium
state. By putting P (t) = P (t−τ) = Pf and H(t) = Hf into
(3), the following coupled algebraic equations are obtained:

Hf =
1

δH

(
βH
[
1− σ(Pf )

]
− VH σ(Pf ) + δHH0

)
(4a)

Pf = Hf∆V R0
a

(
1 + α

[
1− σ(Pf )

])
(4b)

Deriving closed-form solutions of the equilibrium state
(Hf and Pf ) from these nonlinear equations is not trivial.
Employing a numerical optimization technique can be an
easy remedy. However, it has two potential drawbacks:
relatively expensive computational load and local minima.
In order to avoid these problems, we propose a method
to derive an analytic solution for the equilibrium states by
approximating the sigmoid function (2) to a piece-wise linear
function. As illustrated in the multiple examples in Fig. 1, the
sigmoid function can be approximated to a combination of
three linear functions, each of which describes the behaviour
of the sigmoid function within the associated region, as
follows:

σ(P ) '

 k1P + c1; 50 ≤ P ≤ P1

k2P + c2; P1 ≤ P ≤ P2

k3P + c3; P2 ≤ P ≤ 200
(5)

Since the equilibrium state (Pf and Hf ) is unknown a
priori, the “candidate” equilibrium states are first estimated

by using (4) and each of the three linear approximations
in (5). Each obtained candidate Pf is then validated for
consistency with its corresponding region which is pre-
assumed to contain the calculated Pf . For each linearization
(4) can be rewritten as follows:

Hf =
1

δH

(
βH + δHH0 − (kPf + c)(VH + βH)

)
(6a)

Pf = Hf∆V R0
a

(
1 + α− α(kPf + c)

)
(6b)

Denoting A1 = βH + δHH0− cVH − cβH , A2 = k(VH +
βH), A3 = 1 + α − αc, A4 = αk, A5 = ∆V R0

a, and
A6 = 1

δH
; it yields:

Hf = A6

(
A1 −A2Pf

)
(7a)

Pf = A5

(
A3 −A4Pf

)
Hf (7b)

which can be reformulated into a quadratic equation of Pf ,
where a = −A4A2A5A6, b = A4A1A5A6+A3A2A5A6+1,
and c = −A1A3A5A6:

aP 2
f + bPf + c = 0, (8)

which finally results in the following closed-form solution
for Pf :

Pf1,2 =
−b±

√
b2 − 4ac

2a
(9)

Once Pf is determined, Hf can be easily calculated as a
function of Pf using (7a).

C. Stability Analysis

Depending on the CV baroreflex parameter values, the
heart rate and blood pressure responses may converge to
an equilibrium state (stable), attracted to a limit cycle or
diverge (unstable). There is no simple method to analyze
global stability of nonlinear dynamic systems with delays.
However, the system stability in the neighbourhood of an
equilibrium state can be analyzed relatively easily based on
their linearized dynamics with respect to the equilibrium state
[10].

In order to apply a linear system framework to the present
analysis, the delayed state variable P (t− τ) in (3) needs to
be approximated. For this purpose, a new state variable, X ,
is defined according to (10)-(14), using a first-order Pade
approximation (11) in this derivation process:

Pτ (t) = P (t− τ) (10)
L⇒ Pτ (s) = P (s)e−τs = P (s)

1− τ
2 s

1 + τ
2 s

(11)

⇒ Pτ (s) = P (s)(−1 +
2

1 + τ
2 s

) (12)

⇒ Pτ (s) + P (s)︸ ︷︷ ︸
X(s)

=
2P (s)

1 + τ
2 s

(13)

L−1

⇒ X(t) = P (t− τ) + P (t) (14)
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According to (13), the dynamic equation of X is obtained
as follows:

Ẋ(t) =
2

τ

[
2P (t)−X(t)

]
(15)

The delay-free realization of the CV baroreflex model (3)
is given by (18)-(20) where P (t − τ) has been replaced by
X(t)− P (t).

Finally, taking partial derivatives of the delay-free real-
ization at a given equilibrium state (Hf , Pf , Xf ) yields the
“Jacobian matrix” (J) or “State matrix” linearized at the
given state as follows:

JJJ =
∂F

∂Z
(16)

where Z = [H P X]T , and F = {f1f1f1, f2f2f2, f3f3f3}. Based on the
Lyapunov’s Linearization Theorem [10], the CV baroreflex
is stable at an equilibrium state if all the eigenvalues λi
(i = 1, 2, 3) of the Jacobian matrix have negative real parts,
whereas it is unstable if at least one of its eigenvalues has a
positive real part. To investigate this condition, Ms is defined
as follows:

Ms = max
i=1,2,3

[
real(λi)

]
(17)

where real(·) denotes the real part of its argument, and λi
is the i-th eigenvalue.

According to the Hartman-Grobman Theorem [11], sta-
bility properties of a nonlinear system in the vicinity of an
isolated equilibrium can be determined by its linearization if
the linearized system has no eigenvalues on the imaginary
axis. The equilibrium state obtained by our analysis is
isolated in the sense that it is uniquely determined for a
given CV baroreflex parameter configuration. Therefore, Ms

can be used as a quantitative metric to describe the CV
baroreflex stability as long as λi (i = 1, 2, 3) have negative
real parts. Indeed, Ms can be used as a stability margin of
the CV baroreflex which measures the distance between the
dominant system pole and the imaginary axis. The system
forfeits its stability margin, i.e. approaches to instability, as
Ms become closer to imaginary axis.

The impact of a specific parameter configuration on the
stability of the CV baroreflex can be examined by analyzing
the value of Ms over a parameter space of interest. For
instance, a 2-D contour plot can be used to graphically illus-
trate how the configuration of two CV baroreflex parameters
relates to the system stability.

III. METHOD

To evaluate the proposed approach, we conducted a series
of simulation experiments on the CV baroreflex models with
different parameter configurations corresponding to a wide-
ranging degree of CV baroreflex stability. For each parameter
configuration, the equilibrium state was estimated using a
very low-computational load method (9). The model was
then linearized using (16), and the stability was determined
by the Lyapunovs Linearization Theorem. The stability mar-
gin was quantified using (17).

To assess the proposed approach, we conducted numerical
analysis on estimating equilibrium state as well as ana-
lyzing stability. For each parameter configuration, we used
a numerical minimization technique [12] on (4) to find
the equilibrium state, which was compared with the one
estimated using the proposed approach. We also performed a
numerical simulation with the original nonlinear model (3) to
obtain time series sequences of H(t) and P (t) for different
parameter configurations. The steady-state value was then
compared with the estimated equilibrium state (Pf and Hf )
using the proposed approach.

In order to demonstrate how the metric Ms from the
proposed approach can be used to examine the effect of pa-
rameter configuration on the CV baroreflex stability, Ms was
calculated for a wide range of Psp versus the remaining high-
sensitivity parameters. We perturbed every two parameters
by +/- 50% of their typical values in 4% increments, and
computed Ms in order to present in a filled 2-D contour plot
with 25 contour levels afterward. The quantitative stability
margin metric Ms of the CV baroreflex at each point of
the 2-dimensional parameter space is mapped into a pixel-
intensity level. In Fig. 3, higher pixel-intensity levels are
related to lower stability margin, and vice versa. In addition,
an empirical metric for stability margin was defined as the
absolute amount of the fluctuation of P (t) around its average
value for the full nonlinear system. The fidelity of Ms was
then tested against this numerical metric to demonstrate the
accuracy of the proposed metric. It was observed that both
metrics are highly consistent.

IV. RESULTS AND DISCUSSION

The equilibrium states estimated by the proposed approach
were highly consistent with those estimated by numerical
minimization and nonlinear simulation (Fig. 2). Over 100
randomly generated CV baroreflex parameter configurations,
bias and confidence interval obtained from the Bland-Altman
analysis, with respect to nonlinear simulation, were only 1.2
mmHg and 4.3 mmHg, respectively. Fig. 2 shows that the
proposed approach is very accurate in normal blood pressure
range, whereas its accuracy deteriorates in hypertensive and
hypotensive conditions.

We also verified that the proposed approach was compu-
tationally efficient in calculating the profile of stability mar-
gin with respect to CV baroreflex parameter configurations
compared with direct nonlinear simulation. The proposed
approach (Fig. 3) not only was in good agreement with
the nonlinear simulation (Fig. 4) but also was validated
against some a priori knowledge of the CV physiology. For
instance, Fig. 3 is consistent with the well-known fact that the
stability margin of CV baroreflex decreases as the vagal (VH )
and sympathetic (βH ) tones on the heart rate decreases and
increases, respectively. Overall, the results obtained strongly
supported the feasibility and initial proof-of-concept of the
proposed approach to CV baroreflex stability analysis.

The ability to determine the stability of the CV baroreflex
for a given parameter configuration is very important for
CV monitoring and treatment purposes. With our proposed
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Ḣ(t) = f1f1f1
(
H(t), P (t), X(t)

)
= βH

[
1− σσσ

(
X(t)− P (t)

)]
− VH σσσ

(
P (t)

)
+ δH

(
H0 −H(t)

)
(18)

Ṗ (t) = f2f2f2
(
H(t), P (t), X(t)

)
= − P (t)

R0
a

(
1 + α

[
1− σσσ(X(t)− P (t))

])
Ca

+
H(t)∆V

Ca
(19)

Ẋ(t) = f3f3f3
(
H(t), P (t), X(t)

)
=

2

τ

[
2P (t)−X(t)

]
(20)
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Fig. 2. Comparison equilibrium blood pressures estimated using the
proposed approach with (a) numerical minimization and (b) nonlinear
simulation.

Fig. 3. Stability profiles of Psp versus other high-sensitivity parameters
using Lyapunov-based index (Ms)

approach, it is possible to probe the system stability by
knowing that the CV baroreflex will loose its stability margin
by approaching to the regions with higher pixel-intensity
level in the parameter space shown in Fig. 3. For instance,
it is observed that very large and small Psp rather than
moderate Psp is advantageous for the CV baroreflex system
to achieve greater stability margin.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a novel systematic approach
to the stability analysis of the CV baroreflex. The initial
proof-of-principle was performed using a series of sim-
ulation experiments, in which the approach was able to
accurately estimate the equilibrium states and determine the
stability margin. Future work will include the extension
of the proposed approach to global stability analysis and
the development of computationally efficient strategies for
studying the CV baroreflex stability in a multi-dimensional
parameter space.

Fig. 4. Stability profiles of Psp versus other high-sensitivity parameters
using nonlinear simulation
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