
Comparison of Continuous and Discrete Stochastic Ion Channel Models

Ciara Ellen Dangerfield, David Kay and Kevin Burrage

Abstract— The stochastic behaviour of ion channels can be
described by a discrete model or by an approximate continuous
approach. While the discrete approach is exact, it is also less
computationally efficient, and so the continuous model is often
the method of choice since it allows for incorporation into a
multiscale environment. However, in recent years the accuracy
of the stochastic continuous approach for calculating statistics
of certain quantities in the Hodgkin-Huxley model has come
into question. In this paper, we show that by correct formulation
of the continuous model, the first two moments in the number
of open sodium and potassium channels in the Hodgkin-Huxley
model, calculated under voltage clamp conditions using the
continuous approach are in good agreement with those obtained
from the discrete model.

I. INTRODUCTION

Ion channels are specialised proteins that form a pore in
the cell membrane and are a fundamental element in the
generation of an action potential in excitable cells. They open
and close at rates that depend on the membrane potential, V ,
and thus allow or restrict the movement of ions across the
lipid bilayer. The movement of ion channels between these
different states occurs at random. This stochastic behaviour
is thought to be important to the electrical activity of neurons
[1], and cardiac myocytes [2].

In recent years a number of models and computational
algorithms have been developed that aim to accurately and
efficiently capture stochastic ion channel kinetics [3], [4],
[5], [6]. These models use either a discrete exact method or
an approximate continuous approach. Typically the channel
is assumed to reside in one of k discrete states at time t with
the probability of transition between states dependent on its
current position, [7]. This construction of channel behaviour
will be referred to as state formulation. Exact methods model
the channel as a discrete-state continuous-time Markov pro-
cess. Various algorithms have been developed to simulate the
dynamics of this process, [3], [5], and can be used to obtain
the time evolution in the number of channels in each state.

When the total number of channels, Ntot, is rela-
tively large this discrete model can be approximated by
a continuous-state continuous-time Markov chain. The dy-
namics of this process can be described by an Itô type
stochastic differential equation (SDE), which takes the form
of a Langevin equation, [8]. This approach assumes that the
deterministic model is perturbed by a Gaussian noise with
magnitude proportional to 1/

√
Ntot. Individual trajectories
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can be obtained by solving the SDE using one of the many
numerical methods that have been developed, [9]. The solu-
tion provides the time evolution in the proportion of channels
in each state, rather than the discrete number. Although
this approach is not exact, for relatively large numbers of
channels this approximation captures the general behaviour
of the discrete system quite well. The main advantage of the
continuous approach over exact methods is that they are more
computationally efficient and so allow for incorporation into
multiscale models.

The Fox and Lu algorithm, given in [4], makes a further
approximation to improve the efficiency of the SDE model.
Ion channels are often assumed to consist of a series of
independent gates that can be either open or closed. The
channel is open only when all gating particles are in the
open position. This construction of channel behaviour will
be referred to as gating formulation. The dynamics of each
gating variable can be described by an ordinary differential
equation (ODE) and the proportion of open channels is
estimated to be the product of the proportion of open gates. In
[4] the SDE describing the dynamics of the state formulation
of the channel is approximated by the stochastic version of
the ODEs that describe the gating variables. This approach
has been widely used in the literature, [10], [11], [2], as it
is around seven times faster than the most efficient discrete
algorithm. However, a number of recent studies, [12], [13],
[14], have found that the approach produces quite different
action potential statistics compared to exact methods. In
particular, in [13] it was shown that under voltage clamp
conditions in the Hodgkin-Huxley model, the second moment
in the number of open channels differs significantly between
the Fox and Lu algorithm and an exact approach.

In [4] and [15] a SDE describing the state formulation
of ion channel dynamics was derived from the discrete-state
Markov process. The form of the noise term involved the
square root of a matrix, reducing the computational efficiency
of the model. This was the motivation given for the further
approximation that is made in [4].

We show that the square root of the matrix in [4] and [15]
can be calculated directly, rather than numerically, as the
product of a diagonal matrix and a matrix of 0’s and 1’s, [16].
This form of the channel SDE is thus more computationally
efficient as it does not require numerical calculation of a
matrix square root. We note that the square root of this matrix
is not unique and other forms exist, [8], although they are not
as efficient as the form presented here. This paper will focus
on the stochastic behaviour of the sodium and potassium
channels in the Hodgkin-Huxley model. Using voltage clamp
protocol we show that, unlike the Fox and Lu algorithm, the
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second moment in the number of open channels for the SDE
describing the state formulation of the channel is consistent
with that for a discrete method. Therefore by using the
correct construction of the continuous model, voltage clamp
statistics between the discrete and continuous approaches are
similar. The algorithm used to simulate the dynamics of the
discrete process is given in [5], since this is the most efficient
of the exact schemes, [12].

In the methods section the dynamics of the sodium and
potassium channels in the Hodgkin-Huxley model are given.
We also describe in more detail the discrete method, the SDE
for the state formulation of the channel dynamics and the
Fox and Lu algorithm that are used. Finally in this section,
a method for exactly obtaining the mean and variance of a
continuous stochastic process described by a SDE is given. In
the results section we show that the second moment in the
number of open channels for the discrete process and the
state formulation SDE are similar, while the second moment
of the Fox and Lu algorithm is significantly different. We
show this issue does not improve as the number of channels
increases. Finally we conclude with some remarks on the
shortcomings of current numerical algorithms in accurately
solving the SDEs that describe channel behaviour.

II. METHODS

A. Stochastic Models of Ion Channel Dynamics

The Hodgkin-Huxley model, [17], supposes that the
sodium channel consists of three identical activation gates,
m, and one inactivation gate, h, while the potassium channel
has four identical gates, n. Each gate, x, can be either
open or closed at time t and transitions from open to
closed and vice versa at rates ax(V ), bx(V ) respectively that
depend on the membrane potential V . Letting each possible
configuration of open and closed gates represent a different
state of the channel, the Markov kinetics of the sodium and
potassium channels are given by the following state diagrams
respectively.
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Let Ni(t) denote the number of channels in state i at time t.
The chance that a channel shifts from i to j at time t is then
γij(t) = rijNi(t), where rij is the rate at which transition
from state i to state j occurs, given in the diagrams above.
Note that the following conservation law holds, Σd

i=1Ni(t) =
Ntot, where Ntot is the total number of sodium or potassium
channels in the cell and d is the number of transitions the
channel can undergo. Since transitions between states are
reversible d is always even. The channel is assumed to be in
the open state only when all gating variables are open and
so the number of open sodium and potassium channels are
given by Nm3h1(t) and Nn4(t) respectively.

Individual trajectories of these processes can be generated
by the Stochastic Simulation Algorithm, SSA, [18], as in [5].
This is an exact method that tracks the number of channels in
each state. Other discrete numerical schemes track the state
of every channel over time, [6], [3], but are less efficient
approaches [12].

The SSA calculates the waiting time τ until the next
transition and updates the number of channels in each state
based on the most likely transition to have occurred. The
waiting time is sampled from an exponential distribution with
rate λ(t) =

∑
i,j γij(t). The most likely transition to occur

is then determined based on sampling a uniform random
number on [0, 1] from d subintervals of length γij(t)/λ(t).
Finally the state of the system is updated according to which
transition has taken place.

As Ntot increases, the discrete model for the sodium
and potassium channels can be closely approximated by
a continuous-state Markov process. Let y(t) be a vector
whose entries denote the proportion (rather than number)
of channels in each state at time t. Column number e of the
matrix υ denotes the change to the number of channels in
each state as a result of transition e. The chance of transition
e occurring (rijyi(t) for some i j) is the (e, e)’th entry of
the diagonal matrix D(y(t)). The Langevin equation for a
channel that can reside in k states and undergo d transitions
is then given by, [16],

dy(t) = υD(y(t))dt+ 1√
Ntot

Σd/2
p=1b

p(y(t))dWp, (1)

where Ntot is the number of channels and bp(y(t)) are
the columns of the matrix, B(y(t)), a k by d/2 matrix
that satisfies BBT = υD(y(t))υT . The dWj are Wiener
increments which are sampled from a normal distribution
with mean 0 and variance h. Note the first term in the
above equation represents the standard deterministic model
for the state formulation of the channel dynamics. For this
continuous model, the number of channels in the open state
at time t is simply NtotyO(t) where O is the open state.

Since channel transitions are reversible, in [16] they show
that the matrix B can be constructed in a manner that gives
a much simpler form of the noise terms than is presented
in [4] and [15]. The matrix B can be decomposed into two
matrices, B = ES, where E is a k × d/2 matrix and S is
a d/2 × d/2 diagonal matrix. E has two non-zero entries
in each column that are 1 and −1 and the diagonal entries
of S are of the form

√
rijyi(t) + rjiyj(t) for some i and

j. Therefore the vector bp(y(t)) for 1 ≤ p ≤ d/2 has two
non-zero entries of the form

±
√
rijyi(t) + rjiyj(t),

for some i and j. For example, the E matrix and the
diagonal entries of the S matrix for the potassium channel
are respectively,( 1 0 0 0

−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −1

)
,


√

anyn3+4bnyn4√
2anyn2+3bnyn3√
3anyn1+2bnyn2√
4anyn0+bnyn1

 . (2)
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The form of the SDE for the state formulation of the channel
dynamics given by (1) is around seven times faster at each
time step than the SDE derived in [4] and [15] since it does
not involve the square root of a matrix.

Instead of modelling the proportion of channels in each
state by the SDE (1), the Fox and Lu algorithm described
in [4] approximates the fraction of open gating particles of
type x by the following SDE

dx(t)
dt

= (ax−(ax + bx)x(t))dt

+
1√
Ntot

√
ax + (bx − ax)x(t)dW, (3)

where Ntot is the total number of sodium or potassium
channels. The proportion of open channels is then estimated
to be the product of the stochastic gating variables. So the
proportion of open sodium and potassium channels at time
t are given by m(t)3h(t) and n(t)4 respectively, where the
variables m(t), h(t) and n(t) are calculated using (3).

B. First two moments of the number of open channels

The first two moments in the number of open channels for
the discrete approach is estimated using 1000 simulations
of the SSA. However, for a system of SDEs the first two
moments can be calculated exactly, as in [19] and that is the
approach taken in this paper. To the best of our knowledge,
an analytic calculation of the first two moments of (1) and
(3), in the manner described below, has not previously been
presented.

Taking the expectation in (1) and (3) and noting that the
expectation of dW is 0, we obtain the following ODEs
describing the mean of the processes y and x,

dE(y)
dt

= υD(E[y(t)]), (4)

dE[x]
dt

= (ax − (ax + bx)E[x(t)]). (5)

since D(y(t)) is linear. The mean proportion of open chan-
nels calculated using (1) is thus given by E[yO(t)], where O
represents the open state in the vector E[y(t)] which is the
solution to (4). Alternatively the mean proportion of open
channels calculated using the Fox and Lu algorithm, (3),
for the sodium and potassium channels are (E[m])3E[h]
and (E[n])4 respectively, where E[x], x = m,h, n, is the
solution to (5).

An ODE describing the evolution of the second moment
in the proportion of open channels for the process described
by (1) can be obtained by applying Itô’s Lemma [9] to the
function f(y) = y2

O and taking expectations. Itô’s Lemma
is the stochastic analogue of the chain rule and was used in
[19] to obtain the mean and variance of SDEs that model
biochemical reaction networks.

Similarly, applying Itô’s Lemma to the function g(x) =
x2, the second moment of the stochastic gating variables,
given by (3) can be derived. The second moment in the
proportion of open sodium and potassium channels for the
Fox and Lu algorithm is thus estimated to be (E[m2])3E[h2],
and (E[n2])4 respectively.

III. RESULTS

Fig. 1. Time evolution in the second moment of the number of open
channels for the three stochastic simulation methods. The number of
channels is 333 (left) or 666 (right). The voltage step is 16mV (top) or
24mV (bottom).

Fig. 2. Same as (1), but for the sodium channel, with the number of
channels set to 1000 (left) or 2000 (right). In the bottom two plots the
results for the three methods virtually lie on top of one another.

The open channel statistics were calculated for voltage
clamp experiments using the same protocol as in [13]. The
initial holding potential was set to the resting potential
(V = 0) and after 0.1ms it was stepped up to a value
of Vc. Two different voltage step sizes were simulated,
Vc = 24mV and Vc = 16mV . The transition rates for each
gating variable (ax, bx for x = m,h, n) vary with respect to
the transmembrane potential, V , according to the functions
(18) to (23) in [13]. The first two moments of the discrete
stochastic model, i.e. the SSA formulation, are calculated
over 1000 repetitions for each voltage step, while for the
continuous models, (1) and (3), they are calculated in the
manner described at the end of the previous section.

We find that the mean number of open sodium and
potassium channels for (1) and the Fox and Lu algorithm are
both in good agreement with that obtained using multiple
simulations of the SSA, as reported in [13]. We therefore
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omit these results (see [13] Fig. 2). For each voltage step
the total number of sodium channels is set to 1000 or 2000
and the total number of potassium channels is 333 or 666

From Fig. 1 and Fig. 2 it is clear that the second moment in
the number of open channels for the state formulation SDE,
(1), is in good agreement with the discrete model, while
the Fox and Lu algorithm differs significantly from both.
In particular we note that this issue with the Fox and Lu
algorithm does not noticeably improve as the total number
of channels increases.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper we showed that the second moments in
the number of open sodium and potassium channels in the
Hodgkin-Huxley model calculated using the Fox and Lu al-
gorithm significantly differs from the state formulation SDE,
(1), and the discrete model. Therefore, the discrepancies
between continuous and discrete models, as reported in [13],
are not due to the continuous stochastic approximation but
are a result of the further simplification made in [4], namely
that the stochastic behaviour of the state formulation of the
channel can be approximated by the stochastic equations
for the gating variables. This simplification was made since
the state formulation SDE derived in [4] is computationally
expensive due to the matrix square root. However, we have
shown here that due to the special structure of the system,
this SDE can take a much simpler form than was given in
[4] and [15]. The main increase in computational cost of
the SDE we give, (1), as compared with the Fox and Lu
algorithm is that at each time step more Wiener increments
need to be sampled. However, this increase is not significant
since all the Wiener increments can be generated at the
start of the simulation. Thus we have provided a continuous
stochastic method with computational speed comparable to
that of the Fox and Lu algorithm, but that preserves the first
two moments of the exact discrete model.

An extension would be to compare the firing statistics
obtained from these three methods to see if the continuous
model we have given is still in good agreement with the
discrete algorithm. Such statistics must be calculated over
multiple simulations of the continuous model, rather than
analytically as we were able to do here. While there are
many efficient numerical methods for solving SDEs [9], such
schemes do not guarantee that the proportion of channels in
each state will remain positive and in certain cases solutions
can become imaginary. For the simplest model where the
channel is either open or closed, the numerical scheme can
be altered to force solutions to remain positive by continualy
resampling the Wiener increment, as is done in [4]. However,
such alternations have been shown to bias the solution,
[20], and so would not provide a fair comparison between
the discrete and continuous models. Furthmore, such an
alteration is not viable for more complex models such as
those given here. In [15] they alter the state formulation
SDE by replacing the variables in the noise term by their
equilibrium value, ensuring solutions remain real although
not preserving positivity. It is possible that such an alteration

could bias the SDE solution and so using such a method
would not provide a fair comparison between the discrete
and continuous models. We point out that this constraint
is due to issues with accurate numerical algorithms for
simulating the dynamics of the SDEs rather than with the
continuous model itself. Therefore for fair detailed statistical
comparisons between the continuous and discrete models,
numerical algorithms that are able to preserve the boundaries
of solutions to SDEs must be developed, which we leave to
future study.
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