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Abstract— A model-based approach that integrates known
portion of the cardiovascular system and unknown portion
through a parameter estimation to predict evolution of the
mean arterial pressure is considered. The unknown portion
corresponds to the neural portion that acts like a controller that
takes corrective actions to regulate the arterial blood pressure
at a constant level. The input to the neural part is the arterial
pressure and output is the sympathetic nerve activity. In this
model, heart rate is considered a proxy for sympathetic nerve
activity. The neural portion is modeled as a linear discrete-
time system with random coefficients. The performance of the
model is tested on a case study of acute hypotensive episodes
(AHEs) on PhysioNet data. TPRs and FPRs improve as more
data becomes available during estimation period.

I. INTRODUCTION

This study aims to develop a data-driven stochastic al-
gorithm based on physiological model of the cardiovascular
system in order to predict the long-term (minutes or hours)
evolution of the mean arterial pressure (MAP). A well-
regulated systemic arterial pressure is critical for operation
of the cardiovascular system. If the systemic arterial pressure
is significantly below its normal operating point, then the
brain and heart do not receive adequate blood regardless of
their vascular resistance by local control mechanisms [1].
Predicting the evolution of the mean arterial pressure can
help identify timely and appropriate interventions.

We can categorize the methods to study the changes in the
mean arterial pressure into two categories: 1)physiological
model-based, and 2) data-driven. Physiological model-based
approaches have been very popular in 70s and there has been
several attempts to describe the functioning of the cardio-
vascular system. In order to analyze and predict the critical
measures of the cardiovascular system, numerous mathemat-
ical models have been developed for hemodynamics, central
nervous system (CNS) control, pharmacodynamics, and, at a
higher level, the entire closed-loop system [2], [3]. A variety
of modeling approaches have been exploited, ranging from
fluid dynamics models to electrical circuit analogy, from
lumped parameter models to segmental analysis (e.g., [4],
[3], [5], [6], [7]). However, no model is a perfect one, but
only an approximation of the real dynamics.

Today the most popular approaches are data-driven and
based on advances in signal processing such as neural
networks and statistical methods such as logistic regression.
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This is partly because noninvasive technologies for mea-
surement of cardiovascular variables resulted in collection
of data sets at ICUs. That in turn resulted in expansion of
classification-based methods. In developing these algorithms,
the data sets are separated into two categories, training and
test. The algorithms are trained on the training data set to
identify the patterns or parameters. Then, the performance of
the algorithm is tested on the test data set, generally, resulting
on a receiver-operator curve (ROC). The success rate of these
algorithms is based on the training data set which may not
have enough patient variation to develop robust algorithms
for a population with large variation.

In this paper, we provide a method combining data-driven
and physiological model-based approaches. We consider the
complete arterial baroreceptor reflex pathway as a closed-
loop control system composed of an effector portion that in-
cludes heart and peripheral blood vessels and neural portion
that includes arterial baroreceptors, their afferent nerve fibers,
the medullary cardiovascular centers (MCCs), and efferent
sympathetic and parasympathetic fibers [1]. Mean arterial
pressure is the output of the effector portion and the input to
the neural portion while the activity of the sympathetic and
parasympathetic nerves is output of the neural portion and
input to the effector portion.

In general, the effector part of the control system model is
very-well understood; see [8] and references there in. How-
ever, there are still gaps in understanding the neural portion.
Our cardiovascular system model differs from the one in
[8] from various aspects. First, we assume that the closed-
loop system is modeled by linear differential equations
with random coefficients instead of constant coefficients. In
some applications, the constancy of coefficients in successive
observations may reasonably be questioned [9].

Our approach is similar to [8] in the sense that the model
parameters (mean and standard deviation for the stochastic
model) adapt to each subject’s data. Thus there is a learning
period during which the model parameters are calculated.
The duration of the learning period a critical parameter and
depends on the type of MAP-reducing disturbances. Also, the
learning period is repeated periodically to consider changes
in the subject’s state resulting from clinical interventions
or cardiovascular disturbances. The paper is organized as
follows. First, we describe the stochastic predictive assess-
ment model (SPAM). Then, we consider a case study to
predict occurrences of AHE using the predicted evolution
of the MAP from SPAM. Finally, we provide ideas for
improvement of the model and future work.
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II. STOCHASTIC PREDICTIVE ASSESSMENT
MODEL

In the section, we describe the stochastic predictive assess-
ment model (SPAM) in detail. The cardiovascular system
is very complex. It is not practical to model the every
detail of the system. Our goal is to develop a relatively
simple model and incrementally increase the complexity of
the model based on its performance at each level. First, we
develop the closed-loop control system model for the arterial
baroreceptor pathway. Then, we explain a method to estimate
the closed-loop control system model parameters from the
present and past patient data. Finally, we form an ensemble
of MAP time-series data describing the evolution of MAP
over the next half an hour to two hours.

A typical closed-loop control system consists of a plant,
sensor, and controller [10] as shown in Fig. 1. There are two
types of control: 1) Regulation and 2) servo. In regulation,
the reference is a set point and the control objective is to
minimize the steady-state error between the set point and
output. In servo, the objective is to minimize the tracking
error between the reference and output. We consider regula-
tion model where the patient-specific MAP is the set point,
heart rate (HR) is the control signal, and MAP is the output
signal. The plant disturbance is modeled as a single or a
combination of MAP-reducing disturbances.

Fig. 1. Closed-loop feedback system: r = reference, u = control, y = output,
w = plant disturbance, and v = sensor noise.

We now describe the control system model in detail.
The plant corresponds to heart and vessels. The sensor
and controller includes arterial baroreceptors, their afferent
nerve fibers, the medullary cardiovascular centers (MCCs),
and efferent sympathetic and parasympathetic fibers [1]. We
consider heart rate (HR) as the output of the controller
instead of sympathetic and parasympathetic nerve activity
(SNA and PNA). This is because HR responds to the changes
in SNA and PNA and more likely to be among the parameters
collected at ICU, compared to SNA and PNA. The output of
the plant is MAP which is measured by arterial baroreceptors
that sense arterial pressure from the magnitude of the stretch
of the elastic arterial walls. The reference point depends on
various factors. For example during exercise the reference
point may be higher than its normal value. Conversely, the set
point may be lower with increased central venous pressure
(CVP).

We now describe the mathematical model for each control
system component. Suppose given input u, output y is

defined as follows

y[k] =

n∑
i=1

(ai + αi[k])y[k − i] +
n∑

j=1

(bj + βj)u[k − j] (1)

where a1 . . . an and b1 . . . bn are real coefficient, α1 . . . αn

and β1 . . . βn are mutually independent Gaussian white noise
with variance σ > 0, the input is independent with the
random coefficients, n is the order of the system, k is the
current discrete-time point, and k−i are the past data points.
We construct the differential equation using physiological
models of the closed-loop cardiovascular system where the
plant is modeled using fluid-dynamic models, the controller
is constructed based on the past patient vital sign data
observed up until to the prediction point.

In this model, the random coefficients correspond to a
combination of compliances, resistances, and contractility.
These coefficients are patient specific and may vary over the
course of patient monitoring. Since these variations are not
observed in ICU, then it is logical to consider the coefficients
of the linear system to be random [9]. Thus we consider the
model to be as simple as possible yet representative enough
to derive suitable estimators for predicting the evolution of
the system. Second, in this paper we omit the model for the
pulmonary system.

In the following, h(t), p(t), and v(t) denote HR, MAP, and
stroke volume (SV). We assume that both the controller and
plant are linear systems for their given inputs however input
may be function of HR, MAP, and SV. For the controller,
y(t) = h(t) and u(t) = p(t). The plant model is two parts
(states). The first part models the effects of HR and MAP
on SV based on Frank-Starling mechanism. Thus, for the
first part, y(t) = v(t) and u(t) = h(t)/p(t). This implies
an additional feedback loop that is not explicitly shown in
Fig. 1. The second part models the effect of HR and SV on
MAP. Thus, for the second part, y(t) = p(t) and u(t) =
h(t)× v(t).

Given a set of observations of input and output, we state
our parameter estimation problem as follows

ξ = {y[1] . . . y[N ], u[1], . . . , u[N − 1]} (2)

where N is a positive integer, estimate the vector of unknown
parameters

φT = (α1 . . . αn . . . β1 . . . βnσ) (3)

with respect to a cost function. We apply the conditional
maximum likelihood estimator method

φ̂ = arg[maxP (Y1|Y0, U)] (4)

where Y1 = {y[n + 1] . . . y[n + N ]}, Y0 = {y[1] . . . y[n]}
(initial state of the system), and U = {u[1] . . . u[N − 1]}. A
consistent maximum likelihood estimator is derived in [11].

The SPAM algorithm flow chart is provided in Fig. 2.
There are two types of inputs to the algorithm: Parameters:
N : Number of data points for estimation, M : Number of data
points for prediction, R: Number of repetitions, nh: Order of
the controller, nv: Order of the first part (SV) of the plant,
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np: Order of the second part (MAP) of the plant, and A: Age
of the patient (or arterial compliance), and Waveforms: HR,
MAP, and PP (or SV) We estimate SV as the multiplication
of PP and estimated arterial compliance based on age of the
subject.

Fig. 2. The flow chart of SPAM.

We estimate the model parameters for each closed-loop
control system separately1. We calculate the mean and stan-
dard deviation of the random coefficients for each block
of the control system based on the input-output relations
stated above from past N data points. Then we simulate
the closed-loop control system model based on estimated
mean and standard deviation of the random coefficients and
initial conditions to predict the values of the MAP for the
next M data points. We repeat the simulation several times
because of the random coefficients. Thus, the output of the
SPAM algorithm is an ensemble of R MAP time series data
of length M .

III. CASE STUDY: PREDICTION OF ACUTE
HYPOTENSIVE EPISODES

In this section, we consider a case study to predict the
AHEs based on predicted MAP time series data generated
by the SPAM algorithm. One recent study underlying the sig-
nificance of arterial pressure regulation is a statistical study
of acute hypotensive episodes (AHEs) on Multiparameter In-
telligent Monitoring in Intensive Care (MIMIC) II Database
[12][13]. In this paper, an AHE is defined as an interval
in which at least 90% of the non-overlapping one-minute
averages of the arterial blood pressure waveform (MAP)
were in the acute hypotensive range (below 60 mmHg)
during any 30-minute window within the interval. According

1This simplification can result in an unstable closed-loop system. We
discuss the impact of stability in the case study and future work.

to [12], in December 2008, the MIMIC II Database contained
2320 complete adult patient records (including both recorded
physiologic signals and time series, and accompanying clini-
cal data). Arterial blood pressure was recorded in 53% of the
patients. In-hospital mortality of patients with AHE (37.8%)
was more than twice that of patients whose arterial blood
pressure (ABP) was monitored and who did not experience
AHEs (17.8%).

In this case study, we use mean, systolic, and diastolic
blood pressures and heart rate stored in the numerics records
and age of the patient from the clinical records in PhysioNet
AHE Challenge training data [14]. Numerics records in [14]
contain time series of vital signs sampled once per minute.
We preprocess the variables in the numerics data prior to
feeding in to the SPAM algorithm because the numerics
records contain missing data and we need to account for
the sensor noise and artifacts. However, there may still be
signal quality issues while numerics data is being generated
and in that case we need to refer to the waveform data. In
this paper, we have not used the waveform data to confirm
the quality of the numerics data.

The flow chart of the AHE prediction with the SPAM
algorithm is given in Fig. 3. We run the SPAM algorithm
as long as data is available to adapt to the changes in the
patient state. There may be changes in the patient state that
may result in changes in the model parameters SPAM uses to
predict the evolution of MAP. The patient state may change
due to medication or clinician intervention and disturbances
to the cardiovascular system. The AHE identification logic
is applied to all the predicted time series MAP data. If the
AHE is identified in majority of the ensemble, then the onset
of AHE is declared and the mean onset time is recorded or
provided to the user.

Fig. 3. The SPAM algorithm to predict the onset of AHE.

We test the performance of the SPAM AHE prediction
algorithm on two groups in the training data, C1 and H2.
Group C1 contains data from ICU patients who do not have
the AHE in the records. Group H2 contains data from ICU
patients with one or more AHEs and who are not treated
with pressors. There are 10 (14) records in Group H2 (C1)
that contain all the variables needed to run the SPAM AHE
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prediction algorithm and total of approximately 760 (676)
hours of recording for each variable. We run the SPAM
AHE prediction every time a new data point is available.
Since the training data numerics record contains parameters
recorded every minute, the algorithm runs every minute.
However, if the time-complexity of the algorithm is too
demanding for the software/hardware platform, then the pre-
diction frequency needs to be reduced. In order to calculate
the performance of the algorithm, we check whether the
AHE onset is correctly predicted or not at every prediction
point. In general, we observe that once a prediction is made,
the algorithm consistently predicts the onset until the event
occurs.

In the following results, we used the following values for
the input parameters: M = 60, R = 20, nh = nv = np =
2 and AHE prediction threshold is 0.8, i.e., if 80% of the
MAP time-series predictions in the ensemble identify AHE
then we declare the onset of AHE. The True Positive Rates
(TPRs) and False Positive Rates (FPRs) for Groups H2 and
C1 are shown in Tables I and II, respectively. TPRs and
FPRs for Group H2 records are above 95% and below 11%,
respectively. FPRs for Group C1 are below 3.1%. The rates
get better for most of the records as more is available during
the estimation period. On the other hand, in general, as the
estimation time gets longer, the FPRs improve significantly
for both groups. Even though the FPRs and TPRs improve
with increased data points during the estimation period, the
prediction onset time decreases for several records. The mean
prediction onset varied between 15-20 minutes at best.

TABLE I
PERCENT TRUE POSITIVE RATES (TPRS) AND FALSE POSITIVE RATES

(FPRS) FOR GROUP H2.

Record TPR (4 hr) FPR (4 hr) TPR (5 hr) FPR (5 hr)

a40164 NaN 6.71 NaN 9.86
a40099 100.00 10.15 100.00 7.06
a40012 100.00 8.42 100.00 7.50
a40050 100.00 7.63 100.00 5.47
a40119 100.00 7.25 100.00 6.92
a40076 100.00 6.41 100.00 3.44
a40006 100.00 4.65 98.31 2.45
a40051 100.00 4.52 100.00 3.61
a40172 95.00 11.06 95.00 6.73
a40127 66.67 7.73 50.00 6.82

IV. CONCLUSION AND FUTURE WORK

This study provides promising results on predictive assess-
ment of AHEs and can be extended to other MAP patterns
without building a new model. The effect of medication is
still an interesting topic for further investigation. Also, the
model for the neural part can be improved by considering
nonlinear nature of the arterial regulation. We may improve
our current results by implementing an extended Kalman
filter approach to joint state and parameter estimation [15]or
dual unscented Kalman filter [16]. The parameter estimation
theory can be extended to the entire closed-loop system
instead of considering each block separately [17]. In addition,

TABLE II
FALSE POSITIVE RATES (FPRS)(%) FOR GROUP C1.

Record FPR (4 hr) FPR (5 hr)

a40282 3.01 3.10
a41664 2.86 0.31
a40802 2.25 0.89
a41434 1.61 1.55
a41466 0.91 0.15
a41934 0.79 0.25
a40551 0.78 0.32
a41495 0.42 0.00
a40921 0.20 0.13
a40473 0.12 0.00
a41137 0.00 0.00
a41177 0.00 0.00
a42141 0.00 0.00
a42259 0.00 0.07

the AHE prediction logic can be improved to consider the
previous predictions and observations.
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