
  

  

Abstract—Patients with paralysis will one day rely on 
clinically-available brain-machine interfaces (BMI) to facilitate 
activities of daily living. As such, the ability to generate 
dexterous reaching movements remains a prime target of BMI 
algorithms research. The Bayesian approach to BMI 
algorithms requires a statistical model to describe reaching 
movements. To date, available models have either required 
fixed targets or fixed arrival times, neither of which can be 
assumed under natural operating conditions. Recently, we 
described a generative reach model, GPFD-RSE, that 
simultaneously breaks both restrictions. This method combines 
the reach state equation (RSE) with General Purpose Filter 
Design (GPFD). In the following paper, we further compare 
GPFD-RSE against standard methods in simulated open-loop 
decoding using empirically-derived movements, as an adjunct 
to the idealized movements tested previously. Our results 
indicate that GPFD-RSE continues to outperform standard 
methods when reconstructing more realistic arm movements in 
simulation. 

I. INTRODUCTION 
hile reaching movements in daily living may be fast 
or slow, algorithms for the control of reaching 

movements in brain-machine interfaces (BMI) are not 
specifically designed for this capability. In a recent paper, 
we studied this problem, developing a specific BMI method 
to convert neural activity into reaching movements with 
variable intended arrival time and arbitrary intended target 
locations [1]. Our strategy was to extend the reach state 
equation (RSE), a previous method for decoding reaching 
movements when the intended arrival time was known and 
fixed [2]. Because the RSE uses a simple generative model 
of reaching behavior, it provides a convenient formulation to 
describe arbitrary arrival times and targets. To extend the 
RSE, we allowed the user’s intention to span a range of 
discretized arrival times rather than a single fixed arrival 
time. This design choice allowed us to apply General 
Purpose Filter Design (GPFD), a Bayesian prescription for 
generating real-time, recursive BMI algorithms from a set of 
discrete and continuous intentions for the target application 
[3]. This extension of RSE to variable-arrival-times was 
called GPFD-RSE. 

Previously, we compared the performance of GPFD-RSE 
against two existing methods, the Unconstrained Model 

 
Manuscript received March 30, 2011. This work was supported in part 

by the American Heart Association and UCLA Radiology. 
L. Srinivasan is with the Department of Radiology, UCLA, Los Angeles, 

CA 90024 USA (e-mail: ls2@nsplab.org), and a Research Affiliate of the 
Laboratory for Information and Decision Systems, MIT, Boston, MA 02139 

(UM), and the Standard Model (SM). All three methods 
used identical models of neural activity (called observation 
models in the Bayesian approach), but differed in the way 
that reaching movements were modeled (called state 
evolution models in the Bayesian approach). The UM uses a 
random walk model of movement, commonly seen in the 
Kalman filter implementation of BMI, which is one type of 
Bayesian approach. The SM uses a linear Gaussian state 
equation that is empirically fit to a database of sample 
movements. In contrast to the UM and SM, our GPFD-RSE  
uses the RSE to model reaching behavior,  which provides 
the added convenience of bypassing database training or on-
the-fly parameter adjustments. 

In the present work, we further evaluated the GPFD-RSE 
against SM and UM using empirically-derived reaching 
movements. Specifically, we employed arm movements 
recorded from primates during a variable-arrival-time 
reaching task, reported in prior experimental literature [4]. 
In contrast, our recent paper used purely simulated reaching 
movements without empirical basis. The goal of our present 
analysis was to determine whether GPFD-RSE continued to 
outperform SM and UM under more realistic conditions. 
Below, we describe our process for generating this 
empirically-derived movement data. We then present a 
performance comparison between the various methods on 
this more realistic simulated data, using metrics that parallel 
our recent paper [1] and related literature [5, 6]. 

II. METHODS 
We employ a three-step simulation process to compare the 

relative performance of these methods. First, variable-
arrival-time arm movements are simulated with a reaching 
model. Second, ensemble spiking neural activity from 
primary motor cortex (MI) is simulated using an 
empirically-derived point process model of MI spiking 
activity. Third, the GPFD-RSE, SM, and UM methods are 
used to translate this neural activity into arm movements. 
The error between intended and resulting arm movements 
provides a comparative measure of each BMI algorithm. 

The reader is directed to our recent paper for methodology 
related to point-process simulation of primary motor cortical 
activity, as well as implementation of GPFD-RSE, UM, and 
SM [1]. Below, we  describe changes to this methodology 
that were implemented to accommodate  empirically-derived 
reaching. 
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A. Generating Empirically-Derived Reaching Movements 
To generate empirically-derived reaching movements, we 

traced the values of speed profiles reported in Figure 2A of 
[4]. The velocity profiles in this figure were originally 
generated by non-human primates trained to make reaching 
movements of variable arrival time and variable distance 
within a two dimensional workspace. Each velocity profile 
represented velocity in the direction of the corresponding 
target. Profiles where the animal overshot the target were 
eliminated as error trials. The rationale for eliminating these 
trials was that for a task where the intention is to reach to an 
endpoint, overshooting the endpoint is undesirable. The 
traced set included 20 reaching movements with a bimodal 
distribution of target positions. 

Once traced, velocity profiles were collapsed into one is 
vector direction along the positive x-axis. These profiles 
were then rescaled in time to produce one-dimensional 
reaching movements with arbitrary arrival times drawn from 
a uniform distribution between 1 and 3 seconds (Fig. 1).   In 
our previous work [1], simulated movements arrived at only 
two unique endpoints locations.  In contrast, the scaled 
primate movements (SPM) generated in the present work 
tested 20 unique endpoints clustered around two modes. 
 

B. Generating Sample Neural Data 
We also increased the neural ensemble size from 9 (used 

in [1]) to 25. This was to illustrate that performance 
improvement was not restricted to a specific ensemble size. 
The remainder of the validation process was identical to that 
of the main text.  Simulation of MI neural ensemble activity 
and prosthetic control with GPFD-RSE, SM, and UM neural 

prosthetic algorithms were unchanged. Specifically, spiking 
rates were modulated as velocity-dependent inhomogeneous 
Poisson processes: 

 
 2 2 1/ 2
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Here, vx and vy are velocities at time step k in orthogonal 
directions. The model parameters are drawn to approximate 
primate recordings of primary motor cortex [7]: β0 = 2.28 
(unitless), β0 = 4.67 s/m, and θp ∼ uniform(-π,π) (angle in 
radians).  

 

C. Implementing GPFD RSE and SM with This Data Set 
In order to match the new SPM-generated bimodal 

distribution of target positions, GPFD-RSE was run using a 
non-zero target position variance ( ΠT ). While this target 
position variance could be estimated from the sample 
variance of the target positions from each mode, we simply 
chose 10-5 m2 from a constrained optimization on decoding 
error. The discrete target locations of the GPFD-RSE were 
assigned to the means of the two endpoint clusters at 
0.067647 m and 0.113023 m from the origin in the one-
dimensional workspace.  The arrival times modeled by the 
GPFD-RSE were unchanged from the main text at 1.0, 1.7, 
2.3, and 3.0 seconds. 

The SM was formed with one state equation for each of 
the two target clusters. Maximum likelihood parameter 
fitting was performed on a database of 1000 rescaled 
simulated movements to each target cluster.  Simulated 
arrival times were drawn from the same distribution as the 
test set of trajectories.  The general form of the SM was 
unchanged. 

III. RESULTS 
Figure 2 presents results using the SPM data analogous to 

Figure 5 in [1] that used reach-model-based movements. 
Again, the GPFD-RSE distinguishes itself in comparison to 
SM and UM algorithms. In particular, only the GPFD-RSE 
produces fully damped movements in the post-arrival period 
(Fig. 2D). Note that with SP movements, endpoint position 
errors of the GPFD-RSE (Fig. 2C) are non-zero in contrast 
to [1] (Fig. 5C). This is because the scaled primate 
movements produce one of 20 distinct endpoints. Although 
the GPFD-RSE algorithm is capable of incorporating 
endpoint-related planning information for arbitrary target 
locations, no such information was provided to the 
algorithms in this test. With priors on the endpoints loosely 
constrained, GPFD-RSE on SP movements converged to an 
endpoint that was less accurate (Fig. 2C) than with the 
simulated reaches reported in [1] (Fig. 5C). Nevertheless, 
GPFD-RSE consistently outperformed SM and UM 
algorithms in reproducing variable-arrival-time reaches 
across both comparisons. 

Figure 1.  Sample trajectories of scaled primate
movements (SPM).  These trajectories are samples
of temporally scaled versions of 20 unique primate
reaching arm movements published previously (Fig.
2A, Churchland et al. 2006). Arrival times are drawn
from a uniform distribution between 1 and 3 seconds.
Observe the bimodal distribution of arrival locations
induced by the experimental data. SPM trajectories
were collapsed onto one dimension, where trials with
overshoot relative to the final position were
eliminated as error trials. 
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IV. DISCUSSION 
In this paper, we applied empirically-derived arm 

movements to further compare three BMI algorithms in their 
ability to reconstruct reaching movements with variable 
arrival times and target locations. Previously, we had 
introduced GPFD-RSE to break the fixed-target or fixed-
arrival-time restrictions faced by existing BMI methods 
designed for reaching movements (SM, RSE) [1]. In this 
present work, simulation with empirically-derived models of 
neural activity has allowed us to derive, prototype, 
systematically evaluate, and refine candidate BMI methods 
prior to more costly experimental testing. Future work will 
need to examine the effect of experimentally-recorded 
neural signals and closed-loop control. 

 

ACKNOWLEDGMENT 
LS thanks Rengaswamy, Uma, and Shyam Srinivasan for 

scientific discussions. This work was supported in part by 
the American Heart Association Scientist Development 
Grant and UCLA Radiology. 
 

 
 
 
 
 
 
 
 

REFERENCES 

[1] L. SRINIVASAN AND M. J. DA SILVA, "BREAKING THE FIXED-
ARRIVAL-TIME RESTRICTION IN REACHING MOVEMENTS OF 
NEURAL PROSTHETIC DEVICES," IEEE TRANSACTIONS ON 
BIOMEDICAL ENGINEERING, EPUB AHEAD OF PRINT, DOI 
10.1109/TBME.2010.2101599, 2010. 

[2] L. SRINIVASAN, U. T. EDEN, A. S. WILLSKY, AND E. N. BROWN, 
"A STATE-SPACE ANALYSIS FOR RECONSTRUCTION OF GOAL-
DIRECTED MOVEMENTS USING NEURAL SIGNALS," NEURAL 
COMPUTATION, VOL. 18 (10), 2006. 

[3] L. SRINIVASAN, U. T. EDEN, S. K. MITTER, AND E. N. BROWN, 
"GENERAL PURPOSE FILTER DESIGN FOR NEURAL PROSTHETIC 
DEVICES," J NEUROPHYSIOL, VOL. 98, PP. 2456-2475, 2007. 

[4] M. M. CHURCHLAND, G. SANTHANAM, AND K. V. SHENOY, 
"PREPARATORY ACTIVITY IN PREMOTOR AND MOTOR CORTEX 
REFLECTS THE SPEED OF THE UPCOMING REACH," J 
NEUROPHYSIOL, VOL. 96, PP. 3130-46, 2006. 

[5] G. H. MULLIKEN, S. MUSALLAM, AND R. A. ANDERSEN, 
"DECODING TRAJECTORIES FROM POSTERIOR PARIETAL CORTEX 
ENSEMBLES," J NEUROSCI, VOL. 28, PP. 12913-26, 2008. 

[6] B. M. YU, C. KEMERE, G. SANTHANAM, A. AFSHAR, S. I. RYU, 
T. H. MENG, M. SAHANI, AND K. V. SHENOY, "MIXTURE OF 
TRAJECTORY MODELS FOR NEURAL DECODING OF GOAL-
DIRECTED MOVEMENTS," J NEUROPHYSIOL, 2007. 

[7] W. TRUCCOLO, U. T. EDEN, M. R. FELLOWS, J. P. DONOGHUE, 
AND E. N. BROWN, "A POINT PROCESS FRAMEWORK FOR 
RELATING NEURAL SPIKING ACTIVITY TO SPIKING HISTORY, 
NEURAL ENSEMBLE, AND EXTRINSIC COVARIATE EFFECTS," J 
NEUROPHYSIOL, VOL. 93, PP. 1074-89, 2005. 

 

Figure 2.  Performance errors in tracking scaled
primate movements (SPM).  GPFD-RSE (solid
black), SM (solid gray), and UM (dotted gray) errors
are averaged across reaches of various duration. (A,
B) RMSE in (A) position and (B) velocity as a
function of time post movement onset. (C, D) RMSE
in (C) position and (D) velocity as a function of time
post-intended-stop-time. 
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