
  

  

Abstract— We briefly describe a dynamic control system 
framework for neuromodulation for epilepsy, with an emphasis 
on its practical challenges and the preliminary validation of key 
prototype technologies in a chronic animal model. The current 
state of neuromodulation can be viewed as a classical dynamic 
control framework such that the nervous system is the classical 
“plant”, the neural stimulator is the controller/actuator, 
clinical observation, patient diaries and/or measured bio-
markers are the sensor, and clinical judgment applied to these 
sensor inputs forms the state estimator. Technology can 
potentially address two main factors contributing to the 
performance limitations of existing systems: “observability,” 
the ability to observe the state of the system from output 
measurements, and “controllability,” the ability to drive the 
system to a desired state. In addition to improving sensors and 
actuator performance, methods and tools to better understand 
disease state dynamics and state estimation are also critical for 
improving therapy outcomes. We describe our preliminary 
validation of key “observability” and “controllability” 
technology blocks using an implanted research tool in an 
epilepsy disease model. This model allows for testing the key 
emerging technologies in a representative neural network of 
therapeutic importance. In the future, we believe these 
technologies might enable both first principles understanding 
of neural network behavior for optimizing therapy design, and 
provide a practical pathway towards clinical translation. 

I. INTRODUCTION 
mproving the outcomes of therapy devices for epilepsy 

might be facilitated by better understanding the interaction 
between device and the nervous system. While initial 
therapies for movement disorders allowed for immediate 
observation of clinical effects from stimulation, epilepsy is 
more episodic and the linkage between stimulator settings 
and outcomes is not so immediately clear to the 
programming clinician. In addition, initial clinically-
reported results from cycled “open-loop” systems and 
responsive systems appear quite similar [1, 2], suggesting 
that the leveraging of real-time information collected from 
the neural network has not yet been fully utilized. Finally, 
the relative importance of false positive and false negatives 
with respect to therapy and side effects in epilepsy may call 
for algorithms distinct from established cardiac devices. 
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To help enhance outcomes, significant improvements are 
being explored in the technical and scientific understanding 
of device- and neural-circuit interactions. Progress has 
already taken place in sensing, improving therapy delivery, 
and understanding the pathophysiology of the disease state 
[3,4]. We argue that dynamic control theory provides a 
paradigm to further advance the field of neuromodulation, 
and in particular, the treatment of epilepsy (Fig. 1).  

A classical control paradigm consists of a “plant” (the 
nervous system), the controller (neural “stimulator”), the 
sensor (clinical data), and the state estimator (patient 
assessment). In this context, the controller consists of any 
device or method that modulates the activity of a set of 
neurons. For simplicity, such devices will be referred to as 
neural “stimulators”. 

 
Fig. 1. The dynamic control framework for neuromodulation. Desired 
physiological state is the reference signal, the neural “stimulator” is the 
controller, the nervous system is the plant, clinical data is the sensor, and 
patient assessment is the state estimator.  

The goal of neuromodulation is to provide quality disease 
control with ongoing therapy adjustment that minimizes 
clinical and patient burden. Viewing a typical therapy flow 
from a classical control framework, this goal points toward 
the following key technical blocks (ref Fig. 1): 

• Define healthy and neurological disease states using 
objective criteria for assessing performance (Fig. 1a). 

• Improve controllability through more sophisticated 
neural stimulator parameters, such as lead and 
electrode selection, field steering, selective 
stimulation, stimulation frequencies and amplitudes, 
and better understand how these parameters affect the 
physiological state of the nervous system (Fig. 1b). 

• Understand the nervous system and the nature of the 
disease state as the foundation of realizing a therapy 
control strategy (Fig. 1c). 

• Improve disease state observability through 
measurement of pathophysiology biomarkers (Fig. 
1d) and estimation of the physiological state (Fig 1e). 
Enhancements might include quantifiable diagnostics 
and translate to automated systems in the future. 
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The remainder of this paper is structured as follows. Section 
II will define the needed technology blocks within the 
control framework, and our initial validation of these blocks 
within a chronic animal protocol using an implantable 
research device. Section III will provide preliminary results 
of these experiments, with particular emphasis on validating 
controllability- and observability-focused technology blocks 
in the context of neural network behavior. Section IV will 
conclude the paper and discuss next steps.  

II. PRELIMINARY EXPLORATION OF FEEDBACK 
TECHNOLOGY CONCEPTS IN-VIVO 

A. Chronic Protocol in Ovine Model for Epilepsy 
A chronically implanted research tool [3] and protocol 

was used to initiate validation of the key functional blocks 
of a neuromodulation control system. The model for disease 
was the circuit of Papez in the ovine. The protocol and 
model were derived from Stypulkowski [5], and used the 
research device to explore some of the key design features 
related to the dynamic control framework described in this 
paper; the system block diagram is shown in Fig. 1: 

 Controllability: validate the technology’s ability to 
actuate a neural circuit and impact its state through 
stimulation 

 Observability: validate the technology’s ability to 
continuously resolve the neural network state.  At 
minimum, this involves the ability to continuously sense 
the underlying physiological data with and without 
stimulation.  The ultimate goal is to abstract this 
information using algorithms to determine high level 
brain state estimates on which to take action.   

The study was conducted under an IACUC-approved 
protocol. Trajectories for a unilateral anterior nucleus of the 
thalamus (ANT) lead (Medtronic 3389) and unilateral  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hippocampus (HC) lead (Medtronic 3387) were planned, 

and leads implanted using a frameless stereotactic system 
(NexFrame). Intra-operative stimulation to confirm lead 
placement was delivered via a custom-designed system 
based upon implantable DBS hardware. Once lead 
placement was confirmed based upon these 
electrophysiological measures, model 37083 extensions 
were connected to the DBS leads and tunneled to a post-
scapular pocket. The extensions were connected to the 
prototype instrumentation system in the thoracic pocket. 
Following closure of all incisions, anesthesia was 
discontinued and the animal was transferred to surgical 
recovery. 

B. Controllability of Network Behavior 
Following a two week recovery period, stimulation and 

recording sessions were conducted on a weekly basis for 
approximately two hour periods with the animal resting in a 
sling or freely moving. To ascertain the ability to modulate 
network activity, both low and high frequency stimulation of 
the ANT and HC lead to probe network connections and 
dynamics. This was performed both in ambulatory conscious 
animals, as well under anesthesia during surgical 
procedures.  

Electrode impedance and evoked potentials by stimulation 
were collected at each session. The evoked potentials were 
tracked at the weekly monitors for more than six months 
post-implant, The protocol for evoked response testing was 
repeated with the implanted system to replicate results from 
Stypulkowski et al. chronically [5].  

C. Observability of Network Behavior 
Sensing and real-time classification of biopotential 

activity was accomplished in the presence of stimulation. 
Consistent with previous publications on sensing constraints 
during stimulation [3,6], measurements were taken from the 
two electrodes adjacent to the stimulation electrode, which 
was driven relative to the far-field case electrode in 

 

Fig 2: Ovine model for exploring the neural dynamics of the Circuit of Papez; leads are placed in the HC and 
ANT to probe dynamics in the thalamo-cortical network. Shown as stimulation (E1 to case) and Sensing (E0-E2) 
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monopolar mode. This provides sufficient symmetry for the 
brain sensing interface circuit to reject the stimulation as a 
common-mode perturbation. Far-field measurements from 
the stimulation source (ANT sensing during HC stim, and 
vice-versa) did not require this explicit symmetry constraint.  

Recordings of the LFP data from the hippocampus were 
gathered representing ictal and non-inctal states and used to 
train a support vector machine discriminator [7]. In addition 
to monitor sessions, data was also collected at fixed time 
intervals using the embedded loop recorder and downloaded 
at the next monitor to help provide additional training data 
to the classifier. After analysis and supervised learning, the 
algorithm parameters were downloaded to the implanted 
device and detection was run in real-time. Classification 
results were then validated against observations. 

III. RESULTS: CHRONIC IN-VIVO TESTING 

A. Actuation: Exploring the “Controllability” of the 
Neural Network through Stimulation 
The bi-directional capability of the neural interface 

allowed for dynamic measurements of the network’s 
response to stimulation. This includes both time interleaved 
signals such as evoked potentials, as well as the capability to 
resolve neural signals in the presence of stimulation using 
spectral decoding techniques. Evoked signals were collected 
by stimulating one target (ANT) and measuring response the 
response in the other target (HC) per Fig 3. The evoked 
potential ~40ms post-stimulation was used for tracking 
network coupling chronically as this peak was observed 
during initial implant testing [5]. The measured latency for 
the evoked potential is consistent with the values seen 
acutely during implantation under anesthesia. The evoked 
potentials were tracked at the weekly monitors for > six 
months in-vivo, and demonstrated no monotonic trends in 
performance that would lead to concerns about network 
coupling. This work validates the initial feasibility of bi-
directional coupling for modulation of network activity. 
Defining actuation constraints and degrees of freedom is 
ongoing, and requires observability to the network state. 
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Fig 3. Chronic measurement of evoked potentials over six 
months; no systematic trending was observed, although week-
to-week fluctuations were apparent. 

B. Observability: Sensing Methods in Presence of 
Stimulation 
An additional series of tests explored the observability of 

the neural network in terms of the ability of sensing during  
stimulation. A key issue is defining a repeatable 
physiological signal for sensing, especially in the presence 
of a strong stimulation background. We found that  high 
amplitude, high frequency stimulation of the HC can induce 
an after-discharge that can be sensed in the hippocampus, as 
shown in Fig. 4.  This signature was used to explore our 
measurement capability chronically in-vivo.  

 
Fig. 4. Top: Time domain graph (upper) and spectrogram 
(lower) recorded in the HC, showing 2 stimulation bursts of 140 
Hz, 2V HC stimulation. Bottom: On-line spectral processing in 
the research tool used for the detection algorithm: the beta 
band (physiology) and stim channel (monitor for artifact).  
 
A key design goal of the implantable research tools is the 
ability to measure signals in the presence of stimulation. 
Following the methods presented in [3], we are able to 
resolve biomarkers embedded in artifact using frequency 
analysis. As shown in Fig. 4, the presence of an after-
discharge is proceeded by a “wind-up” in the beta band of 
the HC LFP, which after stimulation drops in frequency to 
the theta-dominated spectral signature. The reasons for the 
frequency shift are not yet clear, but appear to be 
physiological. Test tones in a saline tank demonstrated the 
frequency translation is not an artifact. In addition,, biasing 
of the stimulation amplitude to a borderline zone where the 
after-discharge is generated with a random chance (~50%) 
showed that the stimulation artifact is high-Q and stationary 
versus the physiological response (ref second tone of Fig. 4). 

C. Observability: State Classification in Presence of 
Stimulation (State Estimator) 
Enabling a robust detection system requires algorithms 

that perform state estimation in real-time, in the presence or 
absence of stimulation artifact. Using the architecture 
defined in [3,7], sensors are used as inputs to the user-
defined state estimator with two stages of processing: a 
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support vector machine (SVM) front-end and a derived 
statistics back-end.  
 To allow for training of an algorithmic detector of the 
after-discharge processes, we collected spectral powers in 
the device at the physiological bands (broad beta) associated 
with the observed seizure induction and after-discharge. A 
simple one-dimensional detector, however, would be 
confounded by stimulation artifact. To mitigate this we also 
sampled the artifact by tuning to a band (80 Hz) that 
provided a measure of stimulation energy coupling into the 
channel, but minimal physiological data. This allowed us to 
construct an algorithm that detected biomarkers in the 
presence and absence of stimulation. 

 
Fig. 5. Top: Power (physiological-beta, stim) annotated in the 
different states. The red and magenta are the “Sz-seizure” 
state, black represents background. Bottom: SVM-based 
boundary (solid line), with corresponding colored clusters. 
 

Fig. 4 shows the flow of annotating the data for training. 
The area annotated “biomarker present” is labeled as one 
state, with the other areas forming the alternative state; edge 
transitions are kept out of the training set. Fig 5 zooms in on 
the two power channels of interest, illustrating how the 
states can be effectively separated using a multi-dimensional 
detector. The SVM is generated offline by calculating an 
optimal boundary, with the “stimulation” channel providing 
the key dynamic scaling of the boundary to account for the 
spectral leakage inherent in the sensor signal chain. The 
derived statistics back-end models physiological state 
transitions. The back-end “filters” the SVM to balance the 
trade-off between sensitivity, specificity, and detection 
latency, such as during stimulation on/off transitions. Fig. 6 
illustrates the validation of the detector in-vivo after training; 
note that the validation data was taken two weeks after 
training, demonstrating promise for algorithm robustness. 

IV. DISCUSSION AND FUTURE STEPS 
Using the research tool chronically in-vivo, we have 

demonstrated key technology building blocks for exploring 
a dynamic control model for epilepsy therapy. This includes 
“controllability,” where the model and implantable device 

provide a mechanism of actuating network activity, and 
“observability,” where we have demonstrated the capability 
to sense neural state in the presence or absence of 
stimulation. This provides the ability to monitor the state of 
the network and potentially use an algorithm to control 
parameters such as duty cycle, etc, based on physiology. 

 
Fig. 6. Validation of the embedded detection algorithm 
detecting a seizure-induction state and after-discharge in-vivo. 

 
The ultimate translation of these technology blocks into 

dynamic control schemes depends on the behavior of neural 
network dynamics. If network characteristics are relatively 
stationary, then an acceptable control scheme might be to 
provide patient-specific, physiologically based parameters 
for optimizing “open loop” cycled programming. If 
however, the network excitability is variable (circadian, etc), 
then the stimulation control might add in a degree of 
freedom such as an adjustable stimulation duty cycle to 
counteract network variations. In essence, this might take 
the form of a homeostatic feedback method that titrates to 
avoid seizure states, as opposed to attempting to abort ictal 
activity. First principles research will guide the solution. 
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