
  

  

Abstract— Neurological disease is often associated with 
changes in firing activity in specific brain areas. Accurate 
statistical models of neural spiking can provide insight into the 
mechanisms by which the disease develops and clinical 
symptoms manifest. Point process theory provides a powerful 
framework for constructing, fitting, and evaluating the quality 
of neural spiking models. We illustrate an application of point 
process modeling to the problem of characterizing abnormal 
oscillatory firing patterns of neurons in the subthalamic 
nucleus (STN) of patients with Parkinson's disease (PD). We 
characterize the firing properties of these neurons by 
constructing conditional intensity models using spline basis 
functions that relate the spiking of each neuron to movement 
variables and the neuron's past firing history, both at short and 
long time scales. By calculating maximum likelihood estimators 
for all of the parameters and their significance levels, we are 
able to describe the relative propensity of aberrant STN spiking 
in terms of factors associated with voluntary movements, with 
intrinsic properties of the neurons, and factors that may be 
related to dysregulated network dynamics. 

I. INTRODUCTION 
BNORMAL neural firing in the subthalamic 
nucleus (STN) of patients with Parkinson’s 

disease (PD) is postulated to play a role in the 
pathogenesis of the tremor, rigidity, and akinesia 
that characterize the disorder [1]-[3]. Modifying 
neuronal firing patterns in the STN using deep 
brain stimulation (DBS) significantly reduces the 
severity of these symptoms [4]-[5]. However, the 
mechanisms by which DBS achieves its effects 
remain unclear. 

Analyses of spike train data from STN typically 
employ separate descriptive statistical techniques 
to characterize distinct features of the data. Short-
term history dependence is often analyzed with 
interspike interval histograms [6], while long-term 
history dependence related to neural oscillations is 
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often analyzed using spectral estimators [7]. 
Separately, tuning curves are often estimated to 
relate STN spiking rates to features of voluntary 
movements, such as the direction of an arm reach 
[8]-[10]. 

An alternate approach to characterizing the 
statistical properties of neural spike train data is 
the construction of point process probability 
models [11]-[13]. Point process models have been 
used successfully to model and decode neural 
firing in rat hippocampus during a spatial 
navigation task [14], [15], in primate hippocampus 
during learning tasks [16], [17], and in primate 
motor cortex during arm reaching tasks [13], [18], 
among others.  

A central component of point process neural 
modeling is the specification of the conditional 
intensity function, which defines the probability of 
a spike in any small time interval as a function of 
the biological covariates to which neural firing is 
tuned and as a function of the neuron’s past firing 
history [11]. Here, we present a point process 
generalized linear model (GLM) for characterizing 
the spiking activity of STN neurons, recorded 
from PD patients, that relates spiking probability 
simultaneously to factors such as the time course 
of movement planning and execution, directional 
selectivity, refractoriness, bursting and oscillatory 
dynamics. We illustrate the application of this 
model to a sample dataset recorded from STN 
during a voluntary movement task. 

II. METHODS 
We constructed conditional intensity models for 

neurons in the STN that describe the probability of 
spiking at each instant as a function of the time 
relative to the start of a reaching movement and of 
the recent spiking history of the neuron in the past 
150 ms. Given the observation interval, , let 

 be a counting process signifying the total 
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number of spikes fired by the  neuron in the 
recorded population in the interval , for .  
The conditional intensity for this neuron is defined 
as: 

,  (1) 

where  is the past spiking history of all 
observed neurons up to time . 
 To analyze the spiking propensity of the STN 
neurons, we specify the spiking intensity function 
at each time t as a function of the time relative to 
the start of a voluntary arm movement and the 
neuron’s spiking history in the preceding 150 ms 
as follows.   
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Here,  is a basis function for a cardinal 
spline for the movement direction d,  is the 
number of spikes observed in the interval 

€ 

(a,b] 
and  are a set of 

unknown parameters which relate movement time 
course and the neuron’s spiking history to current 
spike rate. Cardinal splines are locally defined 
third order polynomials that can approximate any 
continuous function [19], making them a flexible 
class of basis functions for relating movement 
variables to spiking activity.  The times   and 

 are the analysis start and stop times 
respectively.   
 It follows from the definition of the 
conditional intensity function that the probability 
of a spike in a small time interval  is 
approximately: 
             

€ 

Pr(Spike in [t, t + Δ) |θ) ≈ λ(t |θ )Δ .      (2) 
Hence, the intensity function defines the spiking 

probability in any small time interval . 

The  parameters measure the effect of 

movement planning and execution on the spiking 
probability. The  parameters measure the 

effects of spiking history in the previous 10 ms to 
capture the effects of refractoriness and bursting 
on the spiking probability. The  parameters 
measure the effects of the spiking history in the 
previous 10 to 150 ms, which are most likely 
associated with both the neuron’s individual 
spiking activity and also that of its local network. 

This spiking intensity function defines a point 
process GLM for the observed spike train data. 
Such models have concave likelihood surfaces, 
which allow us to compute maximum likelihood 
estimates for the model parameters in a 
straightforward manner [13]. We examined the 
model fits to the data separately prior to 
movement onset (tstart = -1000 ms, tend= -500 ms) 
and during movement (tstart = 0 ms, tend= 500 ms).  
In order to compare the temporal spiking 
properties prior to and during movement, we 
constructed an additional model encompassing the 
entire trial (tstart = -1500 ms, tend= 1500 ms) where 
the  and  parameters were fit 

separately for these two intervals. Significantly 
different parameter estimates between these 
intervals suggest that the temporal neural firing 
properties change as a function of movement. 

III. RESULTS 
We illustrate the point process model fit to 

spiking data from a STN neuron obtained from a 
patient undergoing DBS implantation surgery. 
During electrode placement, patients performed a 
cued joystick movement task. Each trial began 
with the presentation of a small central fixation 
point. After a brief delay (250 ms), four small gray 
targets appeared, arrayed in a circular fashion 
around the fixation point. After a 1500 ms delay a 
randomly selected target turned green. At this 
point the subject used the joystick to guide a 
cursor from the center of the monitor towards the 
green target. The methods associated with 
intraoperative microelectrode recordings and data 
preprocessing are described in [20].  

Figure 1 shows the model parameters and their 
uncertainty for the maximum likelihood fit to this 
data.  Figure 1A shows the spline estimates and 
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95% confidence bounds of the stimulus related 
component as a function of time relative to 
movement onset, with the splines for the four 
directions plotted in separate colors.  In each case, 
the firing intensity is initially low and begins to 
increase about 500 ms prior to movement onset.  
The intensity reaches a peak between 200 ms prior 
to movement onset to 400 ms after movement 
onset, and eventually returns to initial firing 
levels.  The shaded areas surrounding each 
estimate represent 95% confidence regions about 
the firing rate, which can be used to determine 
when the estimated rate in one direction is 
statistically different from another.  For example, 
in the direction indicated by the red line at 
movement onset, the firing rate is significantly 
lower that in the directions indicated by the blue 
and green lines. 

Figures 1B and 1C show the short term history 
components of the model using the data 1500 ms 
to 1000 ms prior to movement onset and from 
movement onset to 500 ms into the movement, 
respectively.  In both cases, the value of  
is approximately 0.5 and is significantly smaller 
than one, indicating that the probability of 
observing a spike in a 1 ms bin is reduced if a 
spike was observed in the previous 1 ms bin.  The 
values of  and  are significantly 
larger than one, indicating that the probability of 

firing increases 2-4 ms after a spike.  The temporal 
spiking properties within the first 10 ms are not 
significantly different before and during 
movements.   

Figures 1D and 1E show the model parameter 
estimates related to long-term history effects 
before and during movement, respectively.  In the 
period prior to movement onset, these parameters 
have a distinctive shape. , the parameter 
relating to interspike intervals (ISIs) between 20 
and 30 ms, is significantly smaller than one while 

 and , relating to ISIs between 40 
and 60 ms are significantly larger than one.  This 
pattern consisting of a significantly decreased 
probability of firing 20-40 ms after the previous 
spike and a significantly increased probability 40-
90 ms after a spike was present in the majority of 
neurons we examined. During movement, the 
values of the long-term history parameters indicate 
virtually no significant effect of past spiking 
beyond 10 ms, with only  significantly 
different from one.  Although there is still some 
inhibition 20-30 ms after a spike during 
movement, this effect is significantly reduced 
from the period prior to movement initiation. 
 

III. DISCUSSION 
By calculating maximum likelihood estimators 

for all of the parameters and their significance 
levels, we were able to simultaneously 
characterize multiple features previously 
associated with these neurons such as increased 
firing as a function of movement planning and 
execution, directional selectivity, refractoriness, 
bursting, and oscillatory spiking that is attenuated 
during movement.  We also found that in nearly 
all of the recorded neurons, the probability of 
firing a spike was significantly reduced 20-30 ms 
after a previous spike, suggesting that the 
previously described oscillatory firing of these 
neurons is composed of an initial period of 
inhibition followed by a period of increased firing 
probability.  This model is able to capture the 
relative propensity of aberrant STN spiking in 
terms of movement associated factors, factors 

 
Fig. 1. A) Stimulus related firing intensity estimates in each of four 
movement directions.  B) Short term history (0-10ms) parameters 
prior to movement. Blue line represents parameter estimates, black 
dots represent confidence intervals.  C) Short term history parameters 
during movement.  D) Long-term history parameters (10-150ms) 
prior to movement. E) Long-term history parameters during 
movement. 
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associated with intrinsic properties of the neurons, 
and factors that may be related to dysregulated 
network dynamics. 

The mechanism for the oscillatory behavior of 
STN neurons is not fully understood. The pattern 
of inhibition and excitation we observed from 20-
100 ms after a previous spike suggests possible 
network mechanisms. One hypothesis is that 
synchronized firing in the STN feeds back to the 
globus pallidus pars externa (GPe), which then 
provides a wave of inhibition back to STN [21]. 
The timing of the oscillatory spike patterns would 
therefore be determined by the time course of 
excitation and inhibition within this recurrent 
loop.  

Point-process analyses provide an elegant 
approach to determining the contributions of 
intrinsic dynamics and external stimuli to the 
propensity of neurons to fire. Future work will 
focus on characterizing these effects in large, 
simultaneously recorded populations, on 
quantifying the relative contributions of these 
effects in driving neural rhythms, and on 
developing models for how these aberrant 
oscillations lead to the observed pathology in 
Parkinson’s disease.  
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