
  

  

Abstract— Advances in neural electrode technology are 
enabling brain recordings with increasingly fine spatial and 
temporal resolution.   We explore spatio-temporal (ST) 
patterns of local field potential spikes using a new high-density 
active electrode array with 500 µm resolution.  We record 
subdural micro-electrocorticographic (µECoG) signals in vivo 
from a feline model of acute neocortical epileptiform spikes and 
seizures induced with local administration of the GABA 
antagonist, picrotoxin.  We employ a clustering algorithm to 
separate 2-dimensional (2-D) spike patterns to isolate distinct 
classes of spikes unique to the interictal and ictal states.  Our 
findings indicate that the 2-D patterns can be used to 
distinguish seizures from non-seizure state.  We find two 
statistically significant ST patterns that uniquely characterize 
ictal epochs.  We conclude that millimeter-scale ST spike 
dynamics contain useful information about ictal state.  This 
finding may be important to understanding mechanisms 
underlying local circuit activity during seizure generation. 
Further work will investigate whether patterns we identify can 
increase our understanding of seizure dynamics and their 
underlying mechanisms and inform new electrical stimulation 
protocols for seizure termination.  

I. INTRODUCTION 
n epilepsy research, many different brain recording 
techniques have been employed to understand neural 

dynamics between, prior to and during seizures.  
Electrophysiologic studies employ techniques that range in 
size and scale from the Utah array [1], which records multi-
unit activity from penetrating electrodes 400 µm apart, to 
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scalp Electroencephalography (EEG), which records 
electrical potentials that are distorted by the skull, scalp, 
cerebrospinal fluid (CSF) and soft tissues, from electrodes 
many centimeters apart.  Other studies utilize modalities 
ranging from Magnetoencephalography (MEG) and 
functional Magnetic Resonance Imaging (fMRI) to Voltage 
Sensitive Dyes (VSDs).  MEG is a non-invasive technique 
that records magnetic components of potentials 
perpendicular to the EEG, and suffers from low spatial 
resolution, similar to EEG.  Image-based technologies such 
as fMRI and VSDs complement standard electrophysiology, 
though each has its own spatial and temporal resolution 
limitations.  In this study, we use a new, high-spatial density 
subdural surface active electrode array of 360 channels 
covering an area of 10 mm x 9 mm to measure local field 
potential (LFP)-scale electrical signals in vivo from an acute 
feline epilepsy model.  We test the hypothesis that there are 
spatio-temporal (ST) patterns of LFP spike activity recorded 
on a millimeter-scale that are unique to seizures.  

II. METHODS 

A. Animal Recording 
We analyzed micro-electrocorticographic (µECoG) data 

from an acute in vivo feline model of epilepsy.  Adult cats 
were anesthetized with a continuous infusion (3~10 
mg/kg/hr) of intravenous thiopental. A craniotomy and 
durotomy were performed to expose a 2 x 3 cm region of 
cortex.  The high resolution electrode array was then placed 
on the surface of the brain over primary visual cortex, 
localized by electrophysiological recordings of visual 
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Fig. 1.  Photograph of a 360 channel, high density neural electrode array 
used in a feline model of epilepsy.  The electrode array is placed on the 
surface of visual cortex.  The electrode size and spacing is 300 µm x 300 
µm and 500 µm, respectively.  
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evoked potentials.  Picrotoxin, a GABA-A receptor 
antagonist that blocks inhibition, was topically applied 
adjacent to the anterior-medial corner of the electrode array 
in an amount sufficient to induce abnormal electrical spikes 
and seizures from the covered region [2].  

The active electrode array placed on the cortex was used 
to record data from 360 independent channels arranged in 20 
columns and 18 rows, spaced 500 µm apart.  Each electrode 
contact was composed of a 300 µm × 300 µm square of 
platinum.  Two high-performance, flexible silicon transistors 
for each electrode buffered and multiplexed the recorded 
signals[3].  The total array size was 10mm × 9mm.  Signals 
were recorded with an effective sampling rate of 277.7 Hz 
per channel.  Figure 1 is a photograph of the array placed on 
the surface of the visual cortex of a cat.  

We analyzed 13 minutes and 40 seconds of data for this 
study, containing 724 automatically detected spikes and 2 
seizures, verified by expert review. 

  

B. Pre-processing 
All recordings were first band pass filtered between 1 and 

50 Hz using a 6th-order butterworth filter in the forward and 
reverse direction, using Matlab’s filtfilt function, to 
achieve zero-phase filtering. 

64 of 360 channels were non-functional due to 
manufacturing imperfections.  The missing data for these 
channels were interpolated from the surrounding electrodes 
using a 2-D averaging spatial filter of window size 3x3 
pixels. 

Small offsets in time that result from row multiplexing 
were corrected by upsampling and shifting the data in order 
to accurately align rows in time.  Data were first upsampled 
by the number of rows within the array (18) via Matlab’s 
interp function, which applies a low pass filter 
interpolation algorithm.  Data were then temporally shifted 
by their respective row offset. 

  

C. Spike Detection 
We used a voltage-threshold detector to detect spikes on 

the signal obtained by averaging all 360 channels.  The 
voltage threshold was set by visual inspection at -500 µV. 
When the average signal crossed the threshold from above, a 
160 msec segment of the recording was stored (60 msec 
prior to the crossing and 100 msec post-crossing).  

We analyzed only single spikes (i.e. no poly-spikes) and 
retained only spikes which occurred on a majority of the 
electrodes in the 2-D array in order to simplify the analysis 
of spike propagation.  Specifically, the following 
quantitative criteria were used to retain spikes: 1) a single 
negative-going threshold crossing followed by a single 
positive-going threshold crossing within the clipped 160 
msec window surrounding the triggering threshold crossing; 
2) at least 50% of electrodes have a root-mean-square 
(RMS) value >40% of the maximal RMS across channels 

(within the 160 msec window).  724 average spikes met the 
above criteria. Figure 2 shows 16 representative detected 
spike waveforms. 

 

D. Feature Selection 
For each of the 724 spikes, a 63-element feature vector 

was generated in the following manner: The average spike 
waveform was cross-correlated with each of the 360 single-
channel spikes.  This yielded a single value per channel 
capturing the delay of the spike on each channel of the array.  
The zero-meaned RMS (i.e. standard deviation) for each 
channel was then calculated.  This yielded a single value per 
channel capturing a representation of the power of the spike 
on each channel of the array.  The 724x360 delay values 
were then normalized by dividing by each row maximum.  
The 724x360 ‘power’ values were similarly normalized.  
The 724x360 matrix of delay values was then concatenated 
with the 724x360 matrix of ‘power’ values.  The result was 
a 724 x 720 matrix representing 724 spikes, each with 720 
features. Principal components analysis (PCA) was 
performed and a number of dimensions accounting for 
>99% of the data variance was retained.  This resulted in a 
dimensionality reduction from 720 to 63. 

  

E. Clustering 
k-mediods clustering [4] was performed and the gap 

statistic [5] was used to determine the number of clusters, 
similar to methods applied in other EEG classification tasks 
[6].  16 clusters of ST patterns were identified.  Figure 3 
shows delay maps for spikes clustered closest in L1 distance 
to the centroid of each distinct cluster. Blue indicates 
electrodes with early delay values relative to the average 
spike waveform and red indicates electrodes with later delay 
values. All analysis was performed in the Matlab 
environment (The Mathworks Inc., Natick, MA, U.S.A.) 

 

 
Fig. 2.  Representative spike waveforms retained by the spike detection 
algorithm.  Each of the spike waveforms is 160ms clipped from the 
average voltage recording of all 360 channels.  Within each window there 
is only one negative-going crossing followed by one positive-going 
crossing.  These 16 waveforms are of the spikes closest (in the L1 sense) 
to each of the cluster centroids and correspond to the spatio-temporal 
delay maps in Figure 3.  Negative is plotted up by convention. 
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F. Statistical Testing 
We hypothesized that some ST patterns would occur 

preferentially during seizure epochs.  We used Pearson’s 
chi-squared test to test the null hypothesis that the 
proportion of spikes occurring during seizure is equal across 
clusters (i.e. ST patterns).  To address the issue of 
identifying a specific cluster which might account for a 
rejection of the null hypothesis, we conducted a permutation 
test.  We held cluster membership of each spike fixed while 
randomly permuting the seizure and non-seizure labels for 
one million permutations.  For every permutation we 
recorded the maximum (over all clusters) of the proportion 
of seizure-spikes within each cluster to obtain the null 
distribution.  We then compared the observed maximum to 
this null distribution. 

III. RESULTS 
 
Figure 4 displays spike clustering and seizure analysis 

results.  Each of the pies represents one of the 16 different 
spike ST patterns identified.  Delay maps of representative 
spikes from each corresponding cluster are shown in Figure 
3.  The whole area of each pie in Figure 4 is scaled in 
proportion to the total number of spikes within the cluster. 
The blue section within each pie represents the percentage 
of spikes associated with non-seizure epochs.  The red 
section within each pie represents the percentage of spikes 
recorded during seizures.  Clusters 3 and 6 appear to have 

disproportionately large numbers of spikes occurring during 
seizure relative to outside.  

We found a strong relationship between ST pattern and 
seizure state (i.e. within or outside of a seizure epoch).  We 
reject the null hypothesis that the proportion of spikes 
occurring during seizure in each of the 16 clusters was the 
same (χ2(15, N = 724) = 415.1, p<<0.0001).  Furthermore, 
we found the proportion of within-seizure spikes contained  
specifically in clusters 3 and 6 were significantly higher than 
would be expected by chance (p<<0.0001 for both clusters). 

IV. DISCUSSION 
 

Our initial analysis indicates that two specific ST spike 
patterns correlate with seizure epochs.  In addition, we 
found other ST spike patterns that appear to be more loosely 
associated with seizures.  We speculate that those patterns 
indicate periods of transition from the interictal to ictal 
states.  We believe these patterns may hold information 
about the progression of abnormal electrical activity as 
seizures approach. We propose that analyzing the brain’s 
electrical activity using this novel electrode array will 
provide new opportunities to increase our understanding of 
epileptiform spikes and their patterns of propagation.  One 

 
Fig. 3.  Delay maps for the 16 clusters. Each of the above delay maps 
represents the spike within each cluster that is closest to its cluster 
centroid.  Blue indicates electrodes with an early delay value relative to 
the average spike waveform and red indicates electrodes with a late delay 
value.  Color shading represents relative timing of peak voltage in each 
spike, but not speed of propagation.  As an example, the delay map for 
cluster 1 displays a spike ST pattern of propagation across the array of a 
spike that enters on the bottom left and proceeds in a sweeping arc until it 
exits the array in the top left.  The corresponding RMS maps have not 
been included due to space constraints.  
 

 
Fig. 4.  Pie charts representing the 16 identified clusters and their 
proportion of spikes during and outside of seizures. Each of the pie charts 
represents one of the 16 different spike ST patterns identified.  The whole 
area of each pie is scaled in proportion to the total number of spikes within 
the cluster.  The blue section within each pie is the percentage of spikes 
associated with non-seizure epochs.  The red section within each pie is the 
percentage of spikes recorded during seizures. 
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possibility raised by these waveforms, is that spikes and 
seizures, when viewed at this resolution, may have features 
in common with cardiac dysrhythmias.  In this sense it may 
be precisely their multidimensional ST appearance that 
could reveal re-entrant patterns and triggers in the same way 
that these types of events occur in cardiac tissue.  We next 
plan to study the relationship among waveforms leading into 
ictal events, those occurring periodically during seizures, 
and the waveforms that occur immediately prior to seizure 
cessation.   

Recordings at this spatial scale may be important to 
clinical patient care and evaluation for epilepsy surgery, as 
evidenced by studies in humans of high frequency 
oscillations and microseizures that are poorly detected by 
standard clinical electrode systems[7,8].  We anticipate that 
this new electrode technology, combined with novel 
methods for analyzing the large, high-resolution data sets 
arising from it, may lead to better understanding of spike 
discharges and seizure development, and more effective 
therapies for the more than 33% of epilepsy patients who 
remain medically refractory.  
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