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Abstract—The purpose of this study is to assess the Sleep 

Quality (SQ) in powernapping. The contributed factors for SQ 

assessment are time of Sleep Onset (SO), Sleep Length (SL), 

Sleep Depth (SD), and detection of sleep events (K-complex 

(KC) and Sleep Spindle (SS)). Data from daytime nap for 10 

subjects, 2 days each, including EEG and ECG were recorded. 

The SD and sleep events were analyzed by applying spectral 

analysis. The SO time was detected by a combination of signal 

spectral analysis, Slow Rolling Eye Movement (SREM) 

detection, Heart Rate Variability (HRV) analysis and EEG 

segmentation using both Autocorrelation Function (ACF), and 

Crosscorrelation Function (CCF) methods. The EEG 

derivation FP1-FP2 filtered in a narrow band and used as an 

alternative to EOG for SREM detection. The ACF and CCF 

segmentation methods were also applied for detection of sleep 

events. The ACF method detects segment boundaries based on 

single channel analysis, while the CCF includes spatial 

variation from multiple EEG derivation. The results indicate 

that SREM detection using EEG is possible and can be used as 

input together with power spectral analysis to enhance SO 

detection. Both segmentation methods could detect SO as a 

segment boundary. Additionally they were able to contribute to 

detection of KC and SS events. The CCF method was more 

sensitive to spatial EEG changes and the exact segment 

boundaries varied slightly between the two methods. The HRV 

analysis revealed, that low and very low frequency variations in 

the heart rate was highly correlated with the EEG changes 

during both SO and variations in SD. Analyzing the 

relationship between the sleep events and SD showed a negative 

correlation between the Delta and Sigma activity. Analyzing the 

subjective measurement (SM) showed that there were a positive 

correlation between the SL and rated SQ. This preliminary 

study showed that the factors contributing to the overall SQ 

during powernapping can be assessed markedly better using a 

fusion of multiple methods. Future studies will include 

measures of individual performance before and after 

powernapping and investigate its relation to the assessed SQ. 

I. INTRODUCTION 

AKING a short daytime nap can improve the mood, 

alertness, and performance [1]. For Sleep Quality (SQ) 

assessment in powernapping, several factors, which 

have influence on SQ, can be analyzed. Some of these 

factors are the time of Sleep Onset (SO), the Sleep Length 

(SL), the Sleep Depth (SD) or amount of Delta activity, the 

sleep events (such as the K-complex (KC) and the Sleep 

Spindle (SS)), and the Heart Rate Variability (HRV). The 

HRV analysis can contribute to SO and SD analysis.  
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There are several methods for SO detection. One of these 

methods is to calculate the elapsed time between the light off 

to the first Slow Rolling Eye Movement (SREM) event [2]. 

The SREM is known to be the typical phenomenon of sleep-

wake transition.  Another method for SO detection (and SD 

analysis) is to analyze the HRV that can be divided in three 

frequency bands: The Very Low Frequency (VLF - 0.003-

0.04 Hz) is related to long-term regulatory mechanisms 

(activity of the rennin-angiotensin system); the Low 

Frequency (LF - 0.04-0.15 Hz) is related to both sympathetic 

and parasympathetic influence on the sinus node; and the 

High Frequency (HF - 0.15-0.4 Hz) is linked to the 

parasympathetic (vagal) activity [3].  Previous studies of 

HRV during SO (SO defined as the first 60 seconds of 

consecutive stage 1) have showed that the amount of VLF 

and LF activity decreased 2 min before SO [3]. At deeper 

sleep stages there is negative relation between progressing 

Non Rapid Eye Movement (NREM) sleep stage 1 to 4 and 

the amount of both VLF and LF activity, while there is a 

marked increase during Rapid Eye Movement (REM) sleep 

stage [4]- [5]. 

The sleep EEG signal can be analyzed by applying spectral 

power analysis including of Alpha (8-12 Hz), Theta (3.5-8 

Hz), Sigma (12-14.5 Hz), and Delta (0.5-3.5 Hz) activity 

[10]. The Sleep events (included in Sigma and Delta) can be 

detected by signal segmentation and finding the significant 

changes in signal properties. Previous studies have shown 

that there is a negative correlation between the Sigma 

activity and the delta activity (deep sleep in nap) [6].  

The aim of this study is to assess the SQ in powernapping. 

Some of the factors which can affect the SQ are selected. 

The contributed factors are the time of SO, the SL, the SD, 

and the sleep events.  For SO detection, the SREM detection, 

the HRV analysis, the Autocorrelation Function (ACF), and 

the Crosscorrelation Function (CCF) methods are applied. 

The last two mentioned methods are also applied for sleep 

events detection. Another important aim is to apply scalp 

EEG (derivation of FP1-FP2) as an alternative to EOG for 

SREM detection. Finally the relationship between the SD 

and sleep events (linear regression method) and between the 

SL and the rated SQ (subjective analysis) is analyzed.  

II. METHOD 

A. Clinical Data 

A 40-60 min daytime nap (between 17-18 h) was recorded 

in two days (one habituation day for adaptation effect 

analysis) from 10 normal healthy subjects (4 males), with 

the age ranging from 18-32 years. A subjective measurement 

(rating the sleep quality from 0- 100) was applied after 
napping session. The Polysomnography (PSG) recording 

included 14 channels of scalp EEG (10-20 system) and chest 
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ECG, and was performed using the CADVELL® Easy II 

EEG system. The data were sampled at 400 Hz and filtered 

by 50 Hz notch filter. The EEG and ECG signals were pre- 

filtered by a band-pass filter of 0.53-70 Hz and 0.16-35 Hz, 

respectively. The software MATLAB 7.0.4 was applied for 

signal processing. All the EEG signals were divided to small 

segment of 2 seconds and the Root Mean Square (RMS) 

value of each segment’s frequency components was 

calculated. The Fast Fourier Transform (FFT) function was 

used to power spectral analysis of each segment and finding 

its frequency components.  

B. Data Processing 

1) SREM Detection 

To detect and analyze the SREM, the signal from FP1-FP2 

channel was filtered from 0.16-1Hz. The Alpha and Delta 

activities (derivation of C4-P4) were analyzed concurrently 

with SREM analysis. The RMS value for SREM, Alpha, and 

Delta activity was calculated and median filtered (order=3) 

for smoothing the signal. 

2) HRV Analysis 

In the ECG channel all R waves are detected using a 

crosscorrelation method. One selected heart cycle 

(containing R wave) was correlated with the entire signal 

locating the time points with the maximum values in the 

crosscorrelation signal. Each R point was plotted against its 

time interval with the previous R point. The obtained plot 

was then interpolated (Cubic Spline) and re-sampled by a 

sampling frequency of 2 Hz.  The three frequency 

components of HRV were determined using FFT.  

3) ACF Method 

The ACF method was applied for single signal 

segmentation aiming at detecting both SO and sleep events 

[7]. The method is based on calculating the ACF between a 

test and a moving window. The test window is initially 

placed at the beginning of the signal, while the moving 

window starts from the beginning of the signal and scans 

whole the signal. If any significant variation (in amplitude 

and frequency) was found between the moving and test 

window, a new segment boundary will be inserted and the 

test window will be placed at the beginning of the new 

boundary. The process will be repeated until the entire signal 

is analyzed. The length of the moving and test window was 

2 seconds and the threshold for frequency and amplitude (

f
Th

and
pTh

) varied between 2-2.5. The variation in 

amplitude, 
)(npd

 can be found by calculating the square 

root of the power (the ACF at lag zero): 
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Finally the net ACF distance

fTh

nfd

PTh

nPd
nd

)()(
)(  , is 

calculated. As soon as
1)( nd

, a new segment boundary is 

drawn [7].  

4) CCF Method 

The CCF method was applied in this study for multi signal 

segmentation as an alternative to the ACF Method [8]. This 

method is based on calculating CCF between several 

channels and finding the time of activity shift across 

channels. The first step of implementation is to find the 

Normalized Crosscorrelation Coefficient (NCCC) between 

two different times, i  and 
j

 [9]: 
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Where the vector iE
, taken from the time i , can be 

defined as: 
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The 1,ie
  represent the potential fields recorded at time i  

and the sN
, indicates the number of electrodes. The vector 

jE
 is similar to iE

, but is taken from the time=
j

. All the 

NCCC values from sample 1 to N  ( N is the segment length 

in samples) will be included in a NN   normalized 

crosscorrelation Matrix (C). This matrix contains the values 

between 1 to -1 and a diagonal values equal to 1(equation 5). 

This matrix is symmetric compared to diagonal axis and is 

divided to four main areas; two rectangle areas close to 

diagonal containing the values closed to 1 (high similarity 

between the signals), and two rectangle areas close to off 

diagonal containing values close to -1 (low similarity).  
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Finally the error function of the C will be calculated: 
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The error function contains several minima representing 

the transition from one microstate to another. By detecting 
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these minima, the time for new event in EEG signals is 

found. The value of the locale minima should be lower than 

the values of its previous and its following samples. To 

decrease the sensitivity for error minima detection, a 

threshold value was selected for the ratio between the error 

value of 25 samples around the detected minima and the 

error value of 25 samples of its previous and its subsequent 

samples. Fig. 1 shows an example of CCF method 

application.  The first graph shows 0.5 sec (contains KC) of 

the EEG signal with the detected boundary (the red dashed 

line). The second graph shows the C matrix, while the last 

graph shows the error function and the detected minima. 

This algorithm is applied for all the channels at the same 

time, but in this example, only the C4-P4 channel is shown.  

 
Fig. 1. An example of CCF algorithm application; The first graph shows 

0.5 sec (contains KC) of the original signal with the detected boundary (the 

red dashed line). This algorithm is applied for all the channels at the same 

time, but in this example, only the C4-P4 channel is extracted. The second 
graph shows the C matrix which contains the values between 1 to -1 and a 

diagonal values equal to 1. This matrix is symmetric compared to diagonal 

axis and is divided to four main areas; the red rectangles (close to diagonal), 
which their values are closed to 1, and the blue rectangles (close to off- 

diagonal), which their values are close to -1. The last graph shows the error 

function with the detected minima (the red dashed line). X- axis indicates 
samples and the y- axis shows the amplitude of the original signal, the 

samples of matrix, and the error value for the matrix,  respectively. 

5) Sleep Events and SD    

To find the relationship between the sleep events and SD, 

the RMS amount of Sigma activity for each subject was 

plotted against the RMS amount of Delta activity (linear 

regression analysis). 

III. RESULT AND DISCUSSION 

A. SO Detection by Applying SREM Algorithm 

Fig. 2 shows an example of the result of calculating the 

RMS of SREM and Alpha activity. Decrease in Alpha-RMS 

from segment number 106-120, happens concurrently with 

increase in SREM- RMS. This time interval represents the 

SO time. Performing the paired t-test showed that there was 

a significant increase (P value= 0.004) in SREM- RMS 

signal, and there was a decrease in Alpha- RMS, 5 seconds 

after SO time. This result is similar to the study of [2] which 

applied EOG for SREM analysis in SO detection. In addition 

we have improved SREM based SO detection a by 

concurrent analysis of Alpha variations. Excluding the EOG 

make the subjects feel more comfortable to fall asleep. 

Another difference between this study and the study of [2] is 

that in this study, an extra tool (Alpha variation analysis 

concurrently with SREM variation), have been used for SO 

detection.     

 
Fig. 2. The calculated RMS value for the signal generated from FP1-FP2 

(red) and C4-P4 (black). This is the first 6.6 min of the signal (includes SO). 

The x- axis shows the segment number. Each segment has a length of 2 
seconds; y- axis shows the amplitude. 

B. HRV Analysis 

The result of HRV analysis for SO detection showed that 

there was a significant (P value=0.05) decrease in VLF band 

during the SO time. This result is similar to the study of [3]. 

This means that during the SO there might be a decrease in 

long-term regulatory mechanisms. Analyzing the HRV 

during other stages of sleep showed that the VLF and the LF 

increased during the light sleep (first 20 min) and decreased 

during the deeper stages of sleep (last 20 min). Comparing 

this result with the result of the study of [4] and [5], showed 

that at deeper sleep stages there is negative correlation 

between progressing NREM sleep stage 1 to 4 and the 

amount of both VLF and LF activity, while there is a marked 

increase during REM sleep stage [4]- [5]. The mentioned 

studies had analyzed an 8h night sleep and divided it in two 

stages (NREM and REM), while a 60 min daytime nap does 

not include of NREM stage. Dividing the nap procedure in 

two stages (light and deep nap) showed a similar result to the 

result of the [4] and [5]. This means that there is an increase 

in VLF (or long-term regulatory mechanisms) and LF (or 

sympathetic and parasympathetic activity) during the light 

sleep, and there is a suppression in the mentioned activities 

during the deep sleep. According to [4] and [5], if the sleep 

procedure in this project included of REM, the VLF and LF 

activity might increase in REM stage.  

C.  The ACF 

Applying the ACF method showed that it is able to detect 

the SO and sleep event. Fig. 3 shows an example of 

applying the ACF algorithm for KC detection. Three 

segment boundaries were found: one before, and two after 

the KC occurrence. The first boundary was detected 1.2 

seconds before the main component of KC.  That could be 

because of some brain preparation for KC occurrence, which 

leads to signal variation before the KC occurs. It could also 

be because of the KC occurs in longer period than what it is 
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defined and the detected boundary is the real time of KC 

start. The second boundary shows when the KC terminated, 

while the last boundary is detected one second after the KC 

occurrence. 

 

 
Fig. 3. An example of KC detection by ACF method: The first graph 
shows the EEG signal (includes KC) taken from the C4-P4 channel with the 

estimated segments boundaries. The second graph shows the summation of 

variation in segment amplitude and frequency. X- axis shows the time and 
the y- axis shows the amplitude d values, respectively. 

D. The CCF 

The CCF method was able to detect the SO and sleep 

events. Fig. 4 shows an example of CCF method application 

for KC detection on the same signal selection as in Fig. 3. 

Comparing to Fig. 3, this algorithm has detected one extra 

boundary and the time of detected boundaries is not the 

same. The reason of high spatial sensitivity of CCF and 

detecting extra boundaries is that it scans the variation in all 

14 channels (global analysis) and not only C4-P4 channel 

(local analysis). The reason of not detecting the boundaries 

at the same time as in the ACF method is because of the KCs 

do not occur at the same time in all the channels and have 

delay compared to each other. This method is a kind of 

micro segmentation of signal, which means dividing a non-

stationary signal into small stationary segment (with a length 

of 2 seconds in this study) and finding the variation on each 

segment.    

 
Fig. 4. An example (taken from subject 1) of detecting the KC by 

applying the CCF method; the algorithm is applied for all the channels at 

the same time, but in this example, only the C4-P4, C1-A1A2, and C3-P3 
channels are shown. X- axis shows the time and the y- axis shows the 

amplitude. The red dashed line indicates the detected boundary.  

E. Sleep Events and SD 

Plotting the RMS amount of Sigma activity against the 

RMS amount of Delta activity showed a linear regression 

model with a slope value of -0.36. This result is similar to 

the study of [6] and shows that the SD and sleep events are 

negatively correlated. This means that if the person fall 

asleep quickly, and have 1h for sleeping, sleep events will 

occur at the beginning of the sleep procedure, and there will 

be higher opportunity for reaching a deep sleep. As long as 

there is negative correlation between the Delta and Sigma 

activity, a deep nap would not include so many sleep events. 

Occurrence of sleep events can be affected by several 

factors, such as amount of time spending awake, time of 

sleep events occurrence, and amount of Delta sleep. 

F. Subjective Measurement  

Analyzing the result of subjective measurement showed 

that the rated SQ was good (rating value > 70%) for first 9 

subjects. Except for subject 10, falling asleep was easy. 

Analyzing the relationship between the SL and rated SQ 

showed that there was a positive correlation between the SL 

and SQ.    

IV. CONCLUSION AND FUTURE WORKS 

The results showed that SREM detection using EEG is 

possible, but the SREM has to be analyzed concurrently with 

variation in Alpha activity for SO detection. Applying signal 

segmentation and CCF method showed that it is possible to 

classify the sleep process in more detailed stages (micro 

staging the sleep), which differs from the traditional sleep 

classification. Assessment of SQ in this study leads to 

analysis of variation in different physiological processes 

(such as SREM, HRV, local and global EEG). The detected 

time for SO was not the same in the applied methods. This 

was because that SO is a time interval and not a defined 

time. The activity variations in different physiological 

process do not occur at the same time during SO, but 

analyzing several activities during the SO make it possible to 

find the correct time interval for SO. Performing alertness/ 

performance test before and after taking the nap will be one 

of our future works. Measuring the performance is another 

tool for SQ assessment. Currently, we are searching for an 

optimal simulator to test the performance level.    
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