
  

  

Abstract— Functional near-infrared spectroscopy (fNIRS) is 
a non-invasive optical neuroimaging method used to investigate 
functional activity of the cerebral cortex evoked by cognitive, 
visual, auditory and motor tasks, detecting regional changes of 
oxy- and deoxy-hemoglobin concentration. Accurate estimation 
of the stimulus-evoked hemodynamic response (HR) from 
fNIRS signals in order to quantitatively investigate cognitive 
functions requires to cope with several noise components. Some 
of them appear as random disturbances (typically tackled 
through averaging techniques), while others are due to 
physiological sources, such as heart beat, respiration, 
vasomotor waves, and are particularly challenging to be dealt 
with because they lie in the same frequency band of HR. In this 
work we present a new two-steps methodology for the HR 
estimation from fNIRS data. The first step is a pre-processing 
stage where physiological trends in fNIRS data are reduced by 
exploiting a mathematical model identified from the signal of a 
reference channel. In the second step, the pre-processed data of 
the other channels are filtered with a recently presented non-
parametric Bayesian approach (Scarpa et al., Optics Express, 
2010). The presented method for HR estimation is compared 
with widely used methods: conventional averaging, band-pass 
filtering and principal component analysis (PCA). Results on 
simulated data reveal the ability of the proposed method to 
improve the accuracy of the estimates of the functional 
hemodynamic response, as well as the estimate of peak 
amplitude and latency. Encouraging preliminary results in a 
representative real data set showing an improvement of 
contrast to noise ratio are also reported. 

I. INTRODUCTION 
UNCTIONAL near-infrared spectroscopy (fNIRS) is a 
neuroimaging technique that provides the opportunity to 

monitor hemodynamic activity within the human head in a 
low cost and noninvasive manner [1], [2]. Infrared light is 
sent into the head at the surface of the scalp (source) and 
then detected at another location on the scalp (detector). The 
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distance between each source/detector pair (hereafter, 
channel) is typically 3 cm to ensure penetration through 
scalp and skull into the underlying cerebral cortex. 
Fluctuations in the detected signal are related to temporal 
changes in concentration of oxygenated hemoglobin (HbO) 
and deoxygenated hemoglobin (HbR) via a modified Beer 
Lambert Law (MBLL) [3]. fNIRS is used to investigate 
functional activity of the cerebral cortex evoked by motor, 
visual, auditory and, as in the present work, cognitive tasks. 

The signal acquired with fNIRS is a mixture of stimulus-
evoked hemodynamic response (HR) (≈0.1 Hz), global 
physiological noise, which is mainly constituted by heart 
beat (≈1 Hz), respiration (≈0.2 Hz), vasomotor waves (or 
Mayer's waves, ≈0.1 Hz), as well as low and very low 
frequency oscillations (≤0.01 Hz) and measurement noise. 
Several methods have been proposed in the literature to 
estimate HR from fNIRS signal, but the so-called 
conventional averaging (CA) technique is still probably the 
most used method [4], [5]. Succinctly, the HR is determined 
by averaging the fNIRS recordings (trials) collected after N 
identical stimuli, with N being often in the order of several 
tenth. Estimation of the HR is achieved by assuming both 
the independence of the background noise from the activity 
elicited by the to-be-processed stimulus, and the difference 
in phase of the physiological components from stimulus to 
stimulus. Other broadly used methods are based on band-
pass filtering [6] and principal component analysis (PCA) 
[7]. The first method is based on the different frequencies of 
HR and physiological components. PCA is used to eliminate 
low frequency oscillations, removing the first one or two 
eigenvectors, which account for about 80% of the variance 
in the optical data. 

Recently, methods based on the use of “reference 
channels” have been proposed [8], [9], [10]. The “reference 
signal” is acquired by a detector placed on the scalp at a 
distance of 1 cm from the source, rather than the 3 cm of 
standard channels. Since the depth-penetration of the 
reference channel is limited, the acquired signal includes 
global physiological trends but no stimulus-evoked 
hemodynamic response. Consequently, the reference 
channels can be used to model physiological noise 
containing hemodynamic trends from superficial tissue, and 
it is a key element of the proposed method. 
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II. MATERIALS AND METHODS 
The proposed methodology consists of two steps: (A) a 

model of the physiological noise is derived by the reference 
signal and subtracted from the raw data of the other 
channels; (B) resulting data are then filtered with a non-
parametric Bayesian approach to reduce the measurement 
noise [11], [12]. The methodology is assessed against a test 
set composed by synthetic data where the true HR is known 
(C). In addition, a limited set of real data is considered (D). 

A. Step 1: Reduction of Physiological Trends 
The signal acquired by the reference channels contains 

only physiological and measurement noise, and does not 
hold information about HR. The cardiac trend is reduced 
with a notch filter, with a centre frequency set to the 
frequency corresponding to the maximum value of the 
spectrum in the range 0.7-1.5 Hz, and it is computed for 
each trial in order to take into account possible variations of 
heart rate. Due to their quasi-periodic nature, the other 
physiological trends are modeled, on a trial by trial basis, as 
a sum of M sine waves (1), where M is chosen according to 
the number of dominant low frequencies (<0.18 Hz) 
detectable in the spectrum: 
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In practice, the maximum value allowed for M is 3, since 

this is the maximum number of physiological components 
that could be detected in our real data [12]. Indeed, due to 
the presence of a great amount of measurement noise and to 
individual variability, Mayer wave, low respiratory 
frequency and very low frequency oscillations may not be all 
visible in the spectrum. From the reference signal, 
amplitudes (ai, bi, c) and frequencies (ωi) in (1) are identified 
using a least squares minimization algorithm and a grid 
search method [13], respectively. Then, the model-predicted 
reconstruction of the physiological trends (y*

PH) is subtracted 
from the raw channels data, which are then filtered with the 
Bayesian approach of Step 2. 

B. Step 2: Bayesian filtering 
The used Bayesian filtering approach (previously 

developed and assessed in [12] against fNIRS signals which 
had not undergo Step 1), exploits models of the 2nd order a 
priori statistical information on the background fNIRS noise 
and on the unknown HR. While such a statistical description 
of the ongoing fNIRS noise is obtained, trial by trial, by 
fitting an auto-regressive model against pre-stimulus data, 
the a priori known smoothness of the unknown HR is 
formalized by describing it as the multiple integration of a 
white noise process. The model has only one unknown 
parameter which, for each trial, is estimated by the 
discrepancy criterion. The estimated HR is then obtained 
from the average of the filtered trials. 

C. Simulated data 
Simulated data were generated to assess the performance 

of the developed algorithm. 30 simulated subjects were 
produced according to real data acquired in [12] and [14]. 
For each subject, the time series relative to 18 channels for 
HbO and the corresponding 18 channels for HbR were 
generated. A reference channel for each hemisphere was 
simulated, for both HbO and HbR. The position of the 
channels is reported in Fig. 1 on a template [15]. Each 
channel contains about 15600 time-points, corresponding to 
2000 s with a sampling frequency equal to 7.8125 Hz. 

 
Fig. 1. Probe placement on the ICBM152 template (occipital view). 
Sources (red circles) and detectors (black circles) overlaid on the head 
surface of the ICBM152-PM template. The green circles represent the 
reference channels. 
 
It is well known that in fNIRS measurements background 

signals from systemic physiology are additional signals to 
the functional hemodynamic response [12]. These 
fluctuations were thus expressed as a linear combination, as 
in (1), of five sinusoids. Frequency and amplitude of each 
sinusoid were not constant in the time series, and were 
different between subjects. They are reported in Table I. 

 
TABLE I 

PHYSIOLOGICAL COMPONENTS 
 Frequency (Hz) Amplitude (nM) 

cardiac 1.1 ± 0.1 350 ± 10 
respiratory 0.2 ± 0.03 150 ± 10 
vasomotor 0.07 ± 0.04 400 ± 10 
low freq. 0.01 ± 0.001 700 ± 100 

very low freq. 0.001±0.0001 700 ± 100 
Mean and standard deviation of frequency and amplitude of each 
physiological component. 
 
The measurement noise η was modeled as a white normal 

process with standard deviation tuned to bear the standard 
deviation of real data. The measurement noise was different 
between subjects and between channels. In order to simulate 
artifacts (e.g., due to movements of the subject or shifts of a 
source or a detector) short non-cyclic abrupt drifts were 
added in 6 subjects, at a random temporal position and with 
random amplitude. 

The HR, function of time t (t=0 correspond to the 
presentation of the stimulus), was modeled by a linear 
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combination of two gamma-variant functions Γ [16], time 
dependent, with a total of 6 variable parameters (2): 

 
( ) ( )[ ]2211true ,τt,Γβ,τt,Γα(t)u ϕϕ ×−×=   (2) 

 
where utrue is the known HR, α tuned the amplitude, τi and φi 

tuned the shape and scale, respectively, and β determined the 
ratio of the response to undershoot. In order to simulate the 
HR due to two different visual stimuli, two utrue were 
generated by properly tuning the parameters in (2) . This led 
to a first HR profile with a peak amplitude of 180 ± 10 nM 
and a peak latency equal to 5.0 ± 0.2 s, while the second HR 
profile had a peak amplitude of 210 ± 10 nM and a peak 
latency equal to 5.5 ± 0.2 s. Note that HR’s amplitude is 
lower than that of physiological components. 70 stimuli for 
each condition were simulated, with an interval inter-stimuli 
varying between 15 and 20 s. The HRs were added in 
channels A1, A2, B4, C1, C2, D4. In channels A3, A4, B3, 
B7, C3, C4, D3, D7 the peak amplitudes were halved. In the 
other channels no HR was added. 

Thus, samples y(t) of each simulated channel of HbO 
were generated as in (3): 
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where u (if present) contains the samples of utrue in (2), and 
the noise term v contains the physiological components yPH 
and the measurement noise η. 

HbR’s channels were generated in the same way. 
According to our real data, the sign of each component was 
changed, a delay of 1 s was added and all the amplitudes, 
except measurement noise, were reduced to 25%. 

D. Real Data 
Hemodynamic data of a subject were acquired. Cognitive 

task and sources-detectors locations are the same of [14]. In 
order to obtain reference signals, data were acquired adding 
two sources, placed as shown in Fig. 1 (green circles). 

III. RESULTS 

A. Simulated Data 
The proposed methodology was applied to simulated data 

and compared with widely used methods: conventional 
averaging, band-pass filtering and PCA. For each method, 
raw data were first band-pass filtered (Butterworth, pass 
band: from 0.01 Hz to 3 Hz) to further remove any slowly 
drifting signal components and other noise with frequencies 
far from the signal band. The band-pass filtering consisted in 
a classical Butterworth, band-pass, from 0.01 to 0.3 Hz. 
PCA was used to remove the global physiological activity by 
subtracting the component with the largest value of the 
coefficient of spatial uniformity (CSU) from the data [17]. 
The obtained HRs were then smoothed with a Savitzky and 
Golay’s filter with polynomial order equal to 3 and 
framesize equal to 25 time-points. An example of the 
obtained HRs is shown in Fig. 2. 

 
Fig. 2. HR estimate (subject 23, channel 1, condition 1, HbO) obtained 
with CA (magenta), band-pass filtering (cyan), PCA (green), and the 
proposed method (red). The true HR is reported in black. 
 
In order to give a quantitative measure of the goodness of 

the obtained estimates, the estimation error was defined (4): 
 

2
true

2
trueHR uuuE /−=   (4) 

 
where ū was the estimate of the HR and utrue was the HR 
used in (2) to generate the simulated data. The value of EHR 
is a sort of percentage estimation error. The parameters used 
to measure brain activation are the peak amplitude and 
latency of the HRs. Thus, the absolute percentage error of 
the estimate of these two parameters, EA and EL respectively, 
has been evaluated. The indexes EHR, EA and EL were 
obtained for CA, band-pass filtering, PCA and the proposed 
method. They are reported in Table II. 

 
TABLE II 

ESTIMATION ERROR 

  CA Band-Pass PCA Proposed 
Method 

H
bO

 

EHR
22 ± 2 
90 ± 10 

18 ± 2 
74 ± 9 

42 ± 4 
107 ± 16 

6 ± 1 
22 ± 4 

EA
7.2 ± 3.8% 
18.7 ± 5.7% 

4.5 ± 2.5% 
10.2 ± 6.3% 

25.4 ± 3.1% 
31.0 ± 5.9% 

9.5 ± 2.2% 
7.3 ± 4.0% 

EL
4.4 ± 1.5% 
3.6 ± 3.0% 

3.7 ± 0.9% 
3.0 ± 2.7% 

7.2 ± 6.2% 
14.9 ± 9.4% 

3.3 ± 0.9% 
2.0 ± 1.7% 

H
bR

 

EHR
30 ± 4 

121 ± 22 
24 ± 5 
96 ± 18 

47 ± 5% 
122 ± 31% 

12 ± 3 
47 ± 8 

EA
10.3 ± 3.2% 
32.2 ± 5.8% 

3.2 ± 2.4% 
22.8 ± 4.8% 

3.8 ± 2.8% 
28.0 ± 8.7% 

6.2 ± 3.7% 
5.3 ± 4.0% 

EL
3.9 ± 2.1% 
4.4 ± 2.6% 

3.4 ± 1.1% 
4.2 ± 3.4% 

6.6 ± 5.4% 
7.9 ± 4.1% 

2.3 ± 1.5% 
3.6 ± 1.6% 

Mean and standard deviation of estimation error EHR, absolute 
percentage error on the estimation of peak amplitude EA (%) and peak 
latency EL (%) obtained with CA, band-pass filtering, PCA and the 
proposed method. The red values are obtained in the channels in 
which the HR were halved. 
 
The best estimation error (EHR) is obtained with the 

proposed method (6 ± 1, for HbO), which reduces EHR of 
73%, 67%, 86% with respect to CA, Band-pass filtering and 
PCA, respectively. The proposed method achieved excellent 
estimates of peak’s amplitude and latency even if HR’s 
amplitude is halved. Even if performance of the proposed 
method on EA, although good, was not always the best, its 
results on EHR and EL suggest a more robust estimation of the 
peak amplitude with respect to the other methods. The 
higher values of EHR with respect to EA and EL are due to the 
fact that EHR is computed on the whole HR, whose entire 
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profile is difficult to estimate, especially in the first and in 
the last seconds. The higher values of EHR in estimates 
relative to HbR are due to the presence of a greater 
measurement noise with respect to HR amplitude, and 
underline the complexity in analyzing HbR data [18]. 

For each method, the values of peak amplitude were 
considered (for both HbO and HbR), and a one tail t-test was 
performed to identify the channels showing a significant 
activation increase relative to the baseline. A second series 
of one-tail paired t-tests was conducted to compare the two 
conditions. All active channels (the channels in which HR 
was added) were correctly identified by all methods. With 
the proposed method, a significant difference (p<0.05) 
between the two conditions was found in all but one of the 
14 active channels, the exception being the channel with the 
greatest measurement noise. With CA, Band-pass filtering 
and PCA a significant difference was found respectively on 
4, 1, and 8 of the 14 active channels. Furthermore, a series of 
one-tail paired t-tests was conducted to compare the two 
conditions considering the values of peak latency, for both 
HbO and HbR. A significant difference (p<0.05) between 
the two conditions was found with CA, Band-pass filtering, 
PCA and the proposed method respectively in 13, 8, 7, 14 of 
the 14 active channels. 

B. Real Data 
Preliminary results on real data reveal an improvement in 

the contrast-to-noise ratio (CNR, [8]). The CNR obtained 
with the proposed method is 1.52, while the ones obtained 
with CA, band-pass filtering and PCA are 1.29, 1.38, 1.34 
respectively. An exhaustive evaluation of the proposed 
method will be conducted on real data. 

IV. CONCLUSION 
The proposed two steps methodology provides a valuable 

reduction of physiological noise and leads to correct 
measures of brain activation. It achieves a good estimate of 
the functional hemodynamic response in comparison to 
widely used methods and it does not present some 
drawbacks of these methods which are likely to cause worse 
estimation errors. Conventional averaging is algorithmically 
blind to information about HR and fNIRS signals that can be 
independently extracted from the optical signal, and it 
requires many trials (≈100) to obtain a valuable estimate of 
HR. Unlike Band-pass filtering, the proposed method 
reduces noise while preserving the evoked hemodynamic 
response, even if they overlap in terms of frequency spectra. 
This drawback of the band-pass filtering is underlined by the 
non significant difference between the two conditions. 
Problems with PCA include its tendency to decrease the 
amplitude of the hemodynamic response in the activated 
regions and to propagate noise from noisy channels to all 
other channels. Indeed, due to the presence of the HR in 14 
out of 20 channels, the HR itself was partially identified as a 
global oscillation and removed, leading to an 
underestimation of its amplitude. In addition, PCA works 

well if systemic physiological spatiotemporal covariance is 
well separated from the evoked hemodynamic response, but 
this is not true for all subjects. Furthermore, the 
physiological spatiotemporal covariance is not necessarily 
space-time separable, as assumed in PCA [7].  

These results underline that the proposed two-steps 
methodology is a general and flexible way to correctly 
estimate evoked hemodynamic response, and it can be 
employed for a large class of fNIRS experiments. 
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