
  

  

Abstract—To what extent is Empirical Mode Decomposition 

(EMD) able to differentiate the embedded components of a 

cardio-respiratory (CR) signal? We intend to answer this 

question by providing a tool which compares the performances 

of the original EMD algorithm with those of a noise-assisted 

version (CEEMD) on simulated CR signals, depending on the 

frequency and amplitude ratios between their respiratory and 

cardiac components. A statistical Bland & Altman test checks 

the matching of stroke volumes calculated from the extracted 

cardiac signal and those from the simulated one. CEEMD turns 

out to be better than EMD by yielding to reliable multiscale 

representation of simulated CR signals on a wider domain of 

frequency and amplitude ratios. 

I. INTRODUCTION 

HIS paper addresses the question of a good time-scale 

representation of physiological signals containing many 

entangled components. In particular we focus on cardio-

respiratory (CR) signals such as volumetric measurements 

obtained from respiratory inductive plethysmography (RIP). 

Both the activity of the cardiac and respiratory central 

oscillators and the nonlinear coupling of the mechanical 

effects yield to non-stationary signals composed of two 

added up oscillating modes with slow amplitude modulation. 

These features prevent a reliable time-scale representation 

through classical methods. The fully data-driven Empirical 

Mode Decomposition (EMD) proposed by [1] was 

successfully used for decomposing numerous kinds of non-

linear and non-stationary signals into their different scale 

components. In the physiological field, EMD and its variants 

were, for instance, used on postural data [2], lung sound [3], 

blood pressure [4], respiratory sinus arrhythmia [5], RIP 

signals [6] and neuronal signals [7]. Despite encouraging 

results, EMD is not always able to correctly separate all the 

oscillatory modes from a signal. Indeed, occurrence of 

intermittency between the present tones leads to “Mode 

Mixing” and results in the persistence of nonspecific scales 

[8]. Moreover, it happens that the resolution of EMD is 

 
Manuscript received April 15, 2011. This work was granted by IDS SA.  

C. Franco, J. Fontecave-Jallon and P-Y. Guméry are with the UJF-

Grenoble 1 / CNRS / TIMC-IMAG UMR 5525 /PRETA Team, Grenoble, 

F-38041, France (C. Franco, phone: 00 33 4 56 52 00 60; fax: 00 33 4 56 

52 00 33; e-mail: Celine.Franco@imag.fr).  

N. Vuillerme is with the AGIM (AGeing Imaging Modeling) Laboratory, 

FRE 3405, CNRS-UJF-EPHE, La Tronche, France (e-mail: 

Nicolas.Vuillerme@agim.eu).  

 

inadequate to detect the presence of distinct tones in some 

configurations of amplitude and/or frequency ratios. In 

addition, EMD suffers from a lack of analytical foundation 

and experiment is the only way to deepen our understanding 

of its possibilities and limits. That is why, [9] investigated 

the resolution properties of EMD, onto the sum of two non-

linear waveforms and identified the domains within the EMD 

provides a correct separation of the two individual tones, 

depending on their frequency and amplitude ratios. 

Thus, we work on a simulated thoracic volume modeled as 

the sum of a cardiac signal and a respiratory one. This study 

aims at assessing the ability of different EMD algorithms to 

extract the cardiac volume within the simulated CR signal 

depending on the frequency and amplitude ratios between the 

respiratory and cardiac components. 

For a brief outline, the second section of this paper is first 

dedicated to a short description of the CR model and the 

simulated signals generated. Then the reconstruction of the 

cardiac component from the decomposition of the simulated 

CR signals into their underlying oscillatory components by 

two EMD algorithms is described. In the results section, the 

stroke volumes (SV) extracted from each reconstructed 

cardiac signal are statistically compared the theoretical SV, 

depending on the frequency and the amplitude ratios used for 

simulation.  

II. METHODS 

A. Cardio-respiratory model 

In this paper, we use the simplified model of CR 

interactions proposed in [10]. This model mechanically 

combines a ventilatory compartment and a cardiac one, each 

defined by its volume. The volume of the rib cage, or 

thoracic volume Vth, is modeled as the sum of the lung 

volume (or alveolar volume) VA and the heart volume Vh (1). 

Because of anatomical considerations and position of the 

heart within the rib cage, cardiac filling and ejection 

functions are modulated by respiration.  

In current practice, the CR model is made of one periodic 

generator of cardiac volume (cardiac frequency fh) and one 

respiratory module. This latter from [11] is based on 

mechanical equations and a Lienard oscillator and provides 

an oscillatory alveolar volume signal (respiratory frequency 

fA). The mechanical cardiac waveform is modeled as a 

triangle closed to the physiological shape of ventilatory 
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signals observed in apnea when glottis is closed [12] and 

modulated in amplitude by the respiration (2). 
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The cardiac amplitude ah sets the mean SV and the 

respiratory amplitude aA defines the tidal volume. c1, c2 are 

constants specific to the model. See [10] for a complete 

description of the model. 

B. Simulations 

The model is implemented and simulated under Matlab® 

using a classical Runge-Kutta integration method. Simulated 

Vth signals have been generated by varying the heart rate, the 

breathing frequency, the mean SV and the tidal volume. We 

define f as the ratio of respiratory frequency to cardiac 

frequency (f=fA/fh) and a as the amplitude ratio between 

respiratory and cardiac components (a=aA/ah). Considering 

physiological aspects, the range of a is [5-20] and the range 

of f is [1/8-1/3]. We cover the log10(a)-f plan with a uniform 

distribution of 143 physiological stationary simulated 

situations. The simulated signals are sampled at 50 Hz and 

last 120 seconds.  

In Fig.1, we show an example of simulated signals, 

corresponding to one physiological situation: fA = 12 

cycles/minute and aA = 0.5 L for the alveolar volume signal 

VA and fh = 52 beats/minute and ah = 71.25 mL for the heart 

volume signal Vh. 

 
Fig. 1 : From top to bottom and limited to 30 seconds, simulated VA, Vh and 

Vth signals corresponding to the situation with amplitude ratio a = 7.02 and 

frequency ratio f = 0.23. 

C. Empirical Mode Decompositions on simulated signals 

The simulated CR signals Vth have then been decomposed 

into their scaling components through a widespread 

algorithm EMD [1] and one of its variations: the 

Complementary Ensemble Empirical Mode Decomposition 

(CEEMD). Afterwards and for each decomposition, the 

cardiac volumes Vh,EMD and Vh,CEEMD have been reconstructed 

by adding the components corresponding to cardiac period. 

1)  Empirical Mode Decomposition 

EMD is an iterative fully data-driven processing method 

to decompose a signal into its oscillatory components named 

Intrinsic Modes Functions (IMFs) from the highest 

embedded frequency to the lowest one. This method is 

particularly popular because of its local and adaptive 

features which allow it to tackle non-stationarity and non-

linearity respectively. EMD yields to a collection of IMFs 

characterized by their instantaneous frequency and a residue 

corresponding to the DC component of the signal. IMFs 

must verify two properties: 1) zero-local mean 2) a number 

of zero-crossings and a number of extrema differing at most 

of one. Adding up all the IMFs and the residue results in the 

reconstruction of the overall signal. 

An example of EMD applied to a simulated Vth is 

illustrated in Fig.2. To reconstruct the cardiac volume, the 

respiratory artifacts and the low frequency baseline have to 

be removed from the overall Vth signal. Throughout 

simulations, the IMFEMD1 turns out to be the only IMF 

whose mean period corresponds to the cardiac component. 

Finally, the cardiac volume reconstructed through EMD 

denoted Vh,EMD arises from the keeping of the first scale and 

the deletion of the others. 

 
Fig. 2: From top to bottom, simulated Vth signal and IMFEMD 1 to 3 of 

Empirical Model Decomposition applied on Vth. 

 

2) Complementary Ensemble EMD 

The ability of EMD to deal with non-linear and non 

stationary signals such as biosignals largely contributes to its 

success. However, a major drawback of the EMD approach, 

called mode mixing, emerges from experiments [8]. In case 

of intermittency between the embedded modes of a signal, it 

happens that a same IMF contains parts of different time 

scales or that a same mode is fragmented into different IMFs. 

To overcome this phenomenon, a noise-assisted method 

named Ensemble Empirical Mode Decomposition was 

proposed by [13] and refined by [14] to rise to the CEEMD. 

These methods are based on the addition of white noise to 

the original signal x before performing EMD to make the 

scales uniformly distributed. For a collection (ni)1≤i≤N of N 

white noises, EMD is applied to each x+ni. For a given scale, 

the N resulted IMFs are then averaged to converge towards 

the true IMF. CEEMD differs from EEMD in the fact that 

each ni is used twice: once negatively and once positively. 

This operation lightens the computation load and allows an 

exact cancellation of the residual noise in the reconstructed 
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signal. CEEMD was successfully applied to CR signals [6]. 

CEEMD has been applied to the simulated CR signals Vth 

(Fig. 3 for an illustration) with N=100 white noises and a 

signal-to-noise ratio of 0.6. For each simulation, due to the 

CEEMD construction, IMFCEEMD 1 is made of noise. 

IMFCEEMD 4 and 5 are considered as cardiac because of their 

mean period consistent with the cardiac information. Further 

IMFs contain the respiratory component and low frequency 

baseline. IMFCEEMD 2 and 3 are more doubtful: they have 

first been rejected and afterwards included one after the 

other in the sum of IMFCEEMD 4 and 5 to reconstruct a cardiac 

volume. After all, we have considered the reconstruction of 

the cardiac volume Vh,CEEMD as the addition of IMFs 2 to 5, 

since this combination provides the best results according to 

the criterion of acceptance described below. 

 

 
Fig. 3: From top to bottom, simulated Vth signal and IMFCEEMD 1 to 7 of 

Complementary Ensemble Empirical Model Decomposition applied on Vth. 

D. Stroke volume estimation and acceptance 

The stroke volume (SV) is the volume of blood ejected by 

the heart with each beat. From the simulated and the 

extracted cardiac signals, beat-to-beat SV may be estimated 

as the amplitude of the cardiac volume signal at each cardiac 

cycle. For each simulation (120 seconds each), the SV values 

have then been estimated at each beat for the 3 cardiac 

signals at disposal: the reference signal Vh, and the two 

reconstructed signals Vh,EMD and Vh,CEEMD. Cardiac beats 

were detected according to the reference cardiac signal Vh. 

The series are noted SVref, resp. SVEMD and SVCEEMD for Vh, 

resp. Vh,EMD and Vh,CEEMD.  

We have analyzed the relations between extracted SV 

values obtained by decomposition and the reference 

simulated SV volumes, by Bland & Altman statistical test 

[15]. For each simulation, the limits of agreement (95% 

confidence limits) between the SV estimated from 

reconstructions and the reference are computed. Results are 

represented in gray scale on the log10(a)-f plan, according to 

the considered simulation. We finally compare the limits of 

agreement obtained, with the recommendation of [16] for 

cardiac output measurements, which says that “acceptance of 

a new technique should rely on limits of agreement (95% 

confidence limits) of up to ±30%”. 

III. RESULTS 

Fig.4 illustrates, for the simulation proposed in Fig.1, the 

superimposition of the simulated cardiac reference signal Vh 

and each of the two reconstructed cardiac signals. At first 

sight, adequacy of the reconstructed cardiac signal from both 

EMD and CEEMD to the reference signal looks globally 

acceptable outside strong discrepancies at 16s and 21s in the 

EMD case. In fact, the limit of agreement for this simulation 

is 34.2% and 14.8% for EMD and CEEMD respectively and 

thus leads to a rejection of the EMD method and acceptance 

of CEEMD (Fig.5). 

 
Fig. 4: Cardiac signals extracted (bold line) from the previous Vth signal: 

Vh,EMD is the IMFEMD1 on Vth and Vh,CEEMD is the sum of IMFCEEMD 2 to 5 

on Vth. Simulated Vh signal (dashed line) is shown as reference. 

 
Fig. 5: Bland–Altman plot to compare the reference-based SVref with the 

CEEMD-based SVCEEMD measurements of stroke volume (92 measures 

over 120 sec.). The gray domain represents the area of acceptance (±30%). 

 

Fig.6 and Fig.7 summarize the Bland & Altman statistical 

test results for the 143 simulations and for the two 
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algorithms. The domain of frequency and amplitude ratios 

within the estimation of SV is satisfactory is wider in the 

case of CEEMD than EMD. So, CEEMD improves the 

estimation of SV in comparison with EMD. This may result 

from a better ability of CEEMD to separate a cardiac signal 

superimposed to a respiratory one. One may note that the 

boundary of the domain within EMD yields to a perfect 

separation of the two components of a synthetic two tone 

signal in the study of [9] is in agreement with ours. 

Similar Bland & Altman tests have been obtained for the 

other potential combinations of IMFCEEMD described in 

section II.C. but have resulted in narrower domains of 

acceptance. 

 
Fig. 6: Limits of agreement (in %) of Bland & Altman statistical tests 

between estimated SVEMD and reference SVref for the 143 simulations. f is 

the frequency ratio (fA/fh) and a is the amplitude ratio (aA/ah). The white 

dashed line represents the upper limit of the domain [9] within EMD 

provides a correct separation of a two tone signal. Outside this domain, 

EMD badly separates the two tones. 

 
Fig. 7: Limits of agreement (in %) of Bland & Altman statistical tests 

between estimated SVCEEMD and reference SVref for the 143 simulations. f 

is the frequency ratio (fA/fh) and a is the amplitude ratio (aA/ah).  

IV. CONCLUSION 

This study has assessed two EMD algorithms applied to 

simulated CR signals. From each of these decompositions, 

the heart volume has been reconstructed based on periodicity 

considerations and the corresponding SV have been derived 

from. Afterwards the adequacy of the resulting SV with the 

reference has been evaluated statistically onto the whole 

range of physiological respiratory and cardiac parameters of 

the model. CEEMD turns out to be better than EMD, since 

CEEMD is able to extract the cardiac component from a 

signal mixing cardiac and respiratory information, in a larger 

domain of amplitude and frequency ratios than EMD. 

Further investigations may be based on simulated signals 

displaying more complex behaviors including non-

stationarities and one-off events.  

This work provides an innovative tool dedicated to CR 

signals including signal simulation, comparison of 

performance between time-scale decomposition methods and 

their validation. This last feature ensures the extraction of 

physiologically meaningful modes. 
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