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Abstract— During thoracic impedance signal acquisition,
noise is inherently introduced and hence, denoising is required
to allow for accurate event detection. This paper investigates
the effectiveness of Ensemble Emperical Mode Decomposition
to filter random noise. The performance of the EEMD method is
compared with an optimal FIR filter and wavelet denoising. The
IMF selection for signal reconstruction in the EEMD denoising
method is optimized using a sequential search. Denoising
performance was evaluated by the SNR and the accuracy in
event detection after filtering. When all criteria are taken into
account, wavelet seems to outperform both EEMD and FIR

denoising.

I. INTRODUCTION

Impedance cardiography (ICG) has been extensively stud-

ied as a non-invasive and cost-effective method for mon-

itoring cardiac function. Electrodes placed on the thorax

measure changes in electrical impedance, Z , caused by the

fluctuating blood volume during each cardiac cycle [1].

Figure 1 shows part of an ECG (R-R interval) signal and

the corresponding negative time derivative of the electrical

impedance (−dZ/dt) signal, the ICG signal. Various points

related to events in the cardiac cycle can be detected on the

−dZ/dt curve. The B point is associated with aortic valve

opening, while the X point corresponds to the aortic valve

closure. The difference in time between these two points

corresponds to the Left Ventricular Ejection Time (LVET)

and is used, together with the maximum change in impedance

(−dZ/dt)max, to calculate the (beat-by-beat) Stroke Volume

(SV) using e.g. the Kubicek formula [1]:

SV = ρb(L/Z0)2LV ET (−dZ/dt)max (1)

where ρb is the resistivity of blood, L is the distance

between the recordings electrodes and Z0 is the baseline

impedance between the recording electrodes. The problem

is therefore to accurately detect the B, X and C points

from the −dZ/dt signal. However, during the impedance

signal acquisition, noise is inherently introduced and hence,

denoising is required to detect the physiological events as

accurately as possible.

In ICG signal signal acquisition, noise can be of various

origin: electronic noise, motion and respiration artifacts,

electromyographic interference, etc... In this paper, only

random noise is considered. Ensemble Empirical Mode De-

composition (EEMD) is a novel recently developed algorithm
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for the analysis of non-stationary signals [2] and has the

potential to filter electronic noise from the ICG signal. The

purpose of this paper is to investigate the performance of

EEMD in removing electronic noise from the ICG signal and

to study the influence of EEMD denoising on the detection

of the B, C and X points. The performance of the EEMD

method is compared with an optimal FIR filter and wavelet

denoising.

II. METHOD

A. Reference Signal

An ICG signal obtained with the Russian Pneumocard

device was used to create a reference signal. The measured

signal was bandpass filtered (0.5 - 30 Hz) and sampled

with a sampling rate of 1 kHz. From the resulting ICG

signal, four ICG cycles (four R-R intervals in the ECG

signal) were selected to form the master signal. These four

cycles were chosen during a breathhold period, which assures

that no respiration artifacts are included in the signal. Also,

the subject was not moving during the measurement and

hence, no motion artifacts are present. The master signal

consists of four cycles to include a natural diversity in the

ICG signal. Fig. 1 shows the master ICG signal and the

corresponding ECG. The reference ICG signal was then

created by amending copies of the master ICG signal and

truncating the resulting signal to a dyadic length, resulting

in a final reference signal with a duration of 32 seconds. The

mean LV ET and (−dZ/dt)max of the reference signal are

0.21 seconds and 5.10 Ω, respectively.
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Fig. 1. Master −dZ/dt signal and corresponding ECG

B. Noise Simulation and Performance Criteria

White Gaussian noise is added to the reference signal to

simulate electronic noise. Different input noise levels were

tested (0, 5, 10, 15 and 20 dB). The procedure, i.e., adding
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noise and filtering, is repeated 50 times per noise level.

After denoising, the signal-to-noise ratio is calculated using:

SNRout = 20 log10(
||xref ||

||xref − xfilt||
) (2)

where xref is the clean reference signal and xfilt is the

filtered signal. LV ET and (−dZ/dt)max are calculated from

the timing of the B and X event and the amplitudes of

the B and C events, respectively. Therefore, the influence

of denoising on these four parameters are calculated as ∆
= eventref - eventfilt. A positive ∆ yields a timing shift

to the left (earlier detection) or a downward amplitude shift

(lower amplitude). The overall performance of one denoising

method, per input noise level, is analyzed by calculating the

mean and standard deviation of the SNR and four ∆s over

all the 50 realizations. The higher the SNR and the lower

the ∆, the better the performance.

C. Event Detection

First, the instant of the (−dZ/dt)max (point C) is de-

termined on the ICG tracing delimited by two successive

R peaks. Then, starting from this point and descending

backward on the ICG curve, the B point is determined as

the point where the second derivative of the ICG curve is

maximum. Finally, going forward from the (−dZ/dt)max

point, the closing event (point X) is determined as the point

where the second derivative of the ICG curve is maximum,

with the condition that this point is below 10% of the

(−dZ/dt)max threshold.

D. EEMD-based Denoising

Empirical Mode Decomposition (EMD), introduced by

Huang et al. [3] adaptively decomposes a signal x(t) into

N Intrinsic Mode Functions cj(t). EMD separates the full

signal into ordered elements with frequencies ranged from

higher to lower frequencies in each IMF level [4]. After

EMD, the signal is given as:

x(t) =

N∑

j=1

cj(t) + r(t) (3)

where r(t) is the residue after N IMFs have been extracted

and can be considered as cN+1(t). The IMFs represent zero-

mean AM/FM components [3], while the residue is a non-

zero mean low order polynomial [2]. The EMD algorithm

consists of the following steps [3]:

• Identify all the maxima and minima extrema of the

signal x(t).
• Generate the upper and lower envelope by interpolation

between the minima and maxima extrema, respectively.

• Calculate the mean function of the upper and lower

envelope: m(t).
• Compute the difference signal d(t) = x(t) − m(t).
• Replace x(t) with d(t) and iterate the previous four

steps until d(t) becomes zero-mean. Then, d(t) is IMF

1 and is named c1(t).
• Calculate the residue signal r(t) = x(t) − c1(t) and

repeat the procedure as specified by all previous step

with x(t) replaced by r(t) to obtain IMF 2. To obtain

all IMFs, repeat all the steps N times until the final

residual signal is a monotonic function.

The major disadvantage of EMD is the mode mixing effect,

which indicates that oscillations of different time scales

coexist in a given IMF, or that oscillations with the same

time scale have been assigned to different IMFs [4]. This

mode mixing effect could make the physical meaning of an

individual IMF unclear. Therefore, Ensemble EMD (EEMD)

was introduced to remove the mode-mixing effect [2]. Us-

ing EEMD, white noise is added to the signal in many

realizations. The noise in each realization is different and

the added noise can be canceled out on average, if the

number of trials is sufficient [4]. In every trial, the signal

(contaminated by white noise) is decomposed into IMFs as

described previously. Then, the obtained IMFs are ensemble

averaged to arrive at the final result. In the current paper, the

values as suggested by Wu and Huang in [2] are used: white

noise of amplitude 0.2 times the standard deviation of x(t)
and 100 realizations.

Denoising a signal using EEMD consists in partially

reconstructing the signal using Eq. 3, by only using some

specific useful IMFs. In the current paper, a similar approach

as in [4] is used, where both high level and low level IMFs

are eliminated, resulting in a band-pass type filter.

E. Optimal FIR filter

The frequency response of a FIR filter depends on its

coefficients, which in turn are related to the desired cut-off

frequency (fc) and the order of the filter (n). To compare

the performance of EEMD with the best possible solution

using a FIR filter, a Genetic Algorithm (GA) is used to

find the optimal vales of fc and n. The GA searches for

the combination of fc and n resulting in the largest SNR

after filtering. Figure 2 shows the frequency responses of

the obtained optimal FIR filters, on top of the PSD of

the −dZ/dt signal [5]. The corresponding fc and n values

are also indicated. Forward and reverse filtering is used to

eliminated phase distortion.
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Fig. 2. PSD of −dZ/dt and frequency responses of optimal FIR filters

F. Wavelet-based filtering

During Wavelet analysis, the inner product is taken of the

input signal x(t) and some basis functions. The similarity

between the signal and basis functions is measured and
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coefficients indicate how close the signal is to the basis

function. All basis functions are scaled versions of the

same prototype or mother wavelet. Denoising using wavelet

decomposition is performed by selecting the coefficients that

will be used for the reconstruction of the filtered signal.

The Matlab toolbox Wavelab 850 was used for wavelet

denoising. The Symmlet 8 is chosen as the mother wavelet.

Coefficient selection is done by hard thresholding, using the

thresholds determined with the SURE method and increased

with a factor 2 to eliminate some noise components otherwise

present [5].

III. RESULTS AND DISCUSSION

A. Signal-to-noise ratio after filtering

Figure 3 shows the SNR values after denoising using

the optimal FIR filter, Wavelet and EEMD with optimal

IMF selection. Both the mean and the standard deviation

of the 50 repetitions are presented as a function of the

input noise level. All denoising methods result in an increase

of SNR after filtering. EEMD provides higher SNR values

than Wavelet-based filtering. However, the optimal FIR filter

outperforms both EEMD and Wavelet denoising. EEMD

is much more computationally intensive (factor 1000) than

Wavelet denoising.
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Fig. 3. SNR after denoising as a function of the input noise level.

The optimal IMFs used in EEMD denoising are found by

a sequential search. This approach is similar as in [4] and the

cost function to be optimized is the SNR after filtering. As

an example, consider Fig. 4, which shows the contour map

of SNR values after EEMD denoising as a function of the

selected IMFs for a noisy ICG (5dB). No SNR values are

given for the lower right part, since the initial IMF must be

smaller than the final one. The red dot indicates the optimal

IMF combination. Reconstructing the filtered signal using

IMF 6 till IMF 12 and including the residual results in the

maximum SNR after filtering. The low IMF scales contain

high frequency components of the signal, while the high IMF

scales correspond to the low frequency components of the

signal. Hence, using IMF 6 till IMF 12 corresponds to a

bandpass filter.

The sequential search procedure is repeated for every

input noise level, resulting in changing IMF boundaries for

different noise levels, see Table I. The higher the input noise

level, the less IMFs are used for signal reconstruction. A
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Fig. 4. Contour map of SNR as function of selected IMFs; RED dot:
optimal IMF boundaries

trade-off is performed between eliminating noise and using

more IMFs to capture details of the signal.

TABLE I

OPTIMAL IMF SELECTION FOR MAXIMAL SNR

SNRin IMF1 IMF2

0dB 7 11
5dB 6 12

10dB 6 13
15dB 5 13

B. Influence of filtering on the B, C and X point

In ICG analysis, rather than obtaining the best SNR, it is

more important to accurately detect events from which the

LV ET and (−dZ/dt)max can be deduced.
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Fig. 5. Mean absolute error and mean error of B and X event timings.
X-axis: SNRinput [dB]; Y-axis: ∆t [s]

Figure 5 presents the changes in timing of the B and X

events due to denoising. Both the mean absolute error and

mean error are given, together with the standard deviation.

The absolute error in timings decreases for lower input noise

levels. For the B timing, wavelet denoising results in the

lowest absolute error (except for low input noise of 15dB

SNR). The absolute error in X timing is in general higher

than the error in B timing, but no clear advantage for one of
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the three methods can be identified. Comparing the absolute

error with the mean error for the B timing indicates that for

EEMD and the optimal FIR filter these two values are close

together, meaning that both denoising algorithms introduce

a systematic shift to the left (earlier detection of B event).

After wavelet denoising, the B point is shifted to the right

(later detection), except at high input noise levels, but a lower

shift is introduced with respect to the other two methods. For

the X event timing, all methods introduce a shift to the right

(later detection of X event). Only a small shift is introduced

after wavelet denoising, even at high input noise levels. Table

II presents the % change in mean LVET due to a combined

error in B and X timings. Wavelet introduces the least amount

of change in LVET (error lower than 3%), because it has

the lowest mean change in both B and X timings and shifts

both points in the same direction (later detection). Except

for a high input noise level, EEMD performs better than the

optimal FIR filter. However, the changes for both methods in

LVET are much larger because the B point is detected earlier

while the X point is detected later and hence, the LVET is

increased (error up to 13%).

0 5 10 15

0.2

0.3

0.4

B abs(∆A)

0 5 10 15

0.1

0.2

0.3

0.4

0.5

0.6

C abs(∆A)

 

 

 : FIR

 : Wave

 : EEMD

0 5 10 15

−0.3

−0.2

−0.1

0

0.1

0.2

B ∆A

0 5 10 15
0

0.2

0.4

0.6

C ∆A

Fig. 6. Mean absolute error and mean error of B and C event amplitudes.
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Figure 6 shows the mean absolute error and mean error of

the B and C event amplitudes due to denoising. The absolute

error in the amplitude of the B event is the largest after the

wavelet denoising. EEMD and FIR yield similar absolute

errors in B amplitude. The mean error in B amplitude

show that the B event after wavelet denoising is shifted

upward (larger amplitude), while the B event is shifted

downward after optimal FIR and EEMD filtering. Regarding

the absolute error in the C amplitude, the three denoising

methods have comparable performances. The biggest error in

the amplitude occurs at a high input noise level after EEMD

denoising. Wavelet yields the largest standard deviation. All

three denoising methods introduce a systematic downward

shift of the C event. Table II presents the % change in mean

(−dZ/dt)max due to a combined error in B and C ampli-

tudes. In case of an input noise of 0 dB SNR, the wavelet

denoising methods yields the lowest change, with an error of

-7% (underestimation). However, at lower input noise level,

the performance of wavelet denoising is considerably lower

than the other two methods. Wavelet denoising introduces

an upward shift of the B event and downward shift of the C

event, yielding large underestimations of (−dZ/dt)max. The

optimal FIR filter and EEMD introduce a downward shift

of both the B and C amplitude, resulting in lower errors

of (−dZ/dt)max. A possible cause for the high errors in

event amplitude after wavelet denoising is the coefficient

selection. The thresholds obtained by the SURE method were

multiplied by a factor 2, for all input noise levels. Although

higher thresholds are required at high input noise levels,

lower thresholds at lower input noise levels might decrease

the amplitude errors. Further research is required to optimize

the thresholds.

TABLE II

% CHANGE IN LVET AND (−dZ/dt)max

SNRin FIR Wavelet EEMD

LV ET 0dB 10.3 1.8 12.8
5dB 8.1 -2.6 3.9
10dB 7.9 -0.4 5.8
15dB 3.9 0.0 3.5

(−dZ/dt)max 0dB -8.4 -7.3 -11.1
5dB -1.0 -6.1 1.5
10dB 1.3 -4.8 0.7

15dB 0.1 -5.0 -0.1

IV. CONCLUSIONS

EEMD yields higher SNRs after filtering than wavelet

denoising, but the optimal FIR filter results in the highest

SNRs. Optimal IMF selection shows that the higher the input

noise level, the less IMFs are used for signal reconstruction.

Wavelet denoising introduces the least amount of change in

B and X event timings (LVET error of maximum 3%), while

EEMD and the optimal FIR filter introduces significant larger

errors. However, wavelet introduces large error in B and C

event amplitude, leading to errors in (−dZ/dt)max of up to

7%, while EEMD and FIR yield lower errors. If it is possible

to decrease the amplitude errors by optimizing the thresholds

and taken into account the low computation time, the low

distortion of event timings and low errors in LV ET , the

results suggest that wavelet-based filtering is the best option

to denoise an ICG signal with the least amount of event

distortion.
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