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Abstract— Efficient methods for Local Field Potential (LFP)
signal analysis amenable to interpretation are becoming in-
creasingly relevant. LFP signals are believed, in part, to reflect
neural action potential activity, and LFP frequency modula-
tions are linked to spiking events. Furthermore, LFP signals
are increasingly accessible in human brain regions previously
unreachable due to a proliferation of deep brain stimulation
implantation procedures. Traditional LFP analysis involves
computing power spectra densities (PSDs) of these signals,
which captures power at various frequencies in the signal.
However, PSDs are second order statistics and may not capture
non-trivial temporal dependencies that exist in the raw data. In
this paper, we propose an LFP analysis method that is useful
for describing unique features of temporal dependencies in LFP
signals. This method is based on autoregressive (AR) modeling
and draws from the systems identification sub-field of systems
and control. Specifically, we have built and analysed AR models
of LFP activity, and have demonstrated statistically significant
differences in temporal dependencies between diseased globus
pallidus tissue and control regions in two dystonia patients
receiving deep brain stimulation implantation. Differences in
the PSDs of LFP signals between these two groups were not
statistically significant.

I. INTRODUCTION

Local Field Potential (LFP) signals are a type of neural
signal obtained from micro- or macro- electrode recordings
from the cortex or other brain regions. Although precise
characterization of the origination of LFP signals is still
debated, evidence indicates that LFP activity (e.g. oscilla-
tions) are coupled with neuronal discharge events [2], [3],
[4]. A combination of greater ease of access to LFP signals
via macro-electrode recordings during neurosurgery [1], [3],
[6], [4], [7] and evidence of correlation of LFP signals with
neuronal spiking [5], [7] creates a need for improved and/or
alternative LFP analysis methods.

Existing LFP signal analysis methods have mainly relied
on computations in the frequency domain, such as power
spectra density, cross-spectra density, and coherence [1], [3],
[4], [8], [7], [9], [10]. These methods are generally reliable
for determining the frequency content of LFP signals, and
subsequently studying characteristics of the neural system
being probed, including the information content of the LFP
signal at various frequencies, how the neural system is
related to other brain areas, and how the LFP signal is
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related to other neural signals [1], [3], [4], [8], [7], [9], [10].
However, these methods have inherent limitations due to
the non-stationary nature of or temporal dependencies in the
LFP signals ([8], [10]). They also fail to characterize other
relevant properties of the neural systems, including causality,
stability, and levels of amplification provided by the neural
circuit on the LFP signals. Precise definitions of these charac-
teristics are provided later. Finally, these statistics are purely
descriptive, and make no headway towards predictive models
which may have advantages when engineering improved
therapeutics.

The method of LFP analysis proposed herein employs
autoregressive (AR) modeling and standard techniques from
the systems identification field. AR modeling is a method
of curve fitting for random processes. The simplest AR
models relate past events in a linear difference equation to
predict future events. The method estimates an AR model
for each LFP signal and then represents the model with a
state space description (see Deistler for review paper [11]).
The state space description entails a state evolution equation
and an output equation. The state evolution equation provides
information about system stability and temporal dependence
in the maximum eigenvalue and the maximum singular value,
respectively.

This method of analysis provides insights that may be
unattainable with PSD-based computations alone. We sup-
port this assertion with novel results presented below. We
have applied this analysis method to LFP signals acquired
during implantation of deep brain stimulation electrodes in
two human dystonia patients. LFP signals acquired from
affected brain regions were compared to LFP signals ac-
quired from unaffected brain regions. PSDs of these signals
showed no statistically significant differences between the
two groups. However, the method proposed here showed that
LFP activity in unaffacted regions had significantly greater
temporal dependencies (i.e. memory) than affected regions.
Our findings suggest that GPi regions associated with af-
fected body regions lose their ability to retain information
(i.e. lose memory) and generate neural signals that are closer
to white noise, which may cause the observed movement
disorders in patients.

II. METHODS

Here, we model the LFP activity as the output of a linear
time invariant system driven by white Gaussian noise. The
model structure belongs to the well known autoregressive
(AR) class. We then describe the state space representation
of such models and summarize the measures from a state
space model that we use to analyse LFP data.
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A. AR Models of LFP Signals

Our approach to analysing LFP signals is to compute and
analyse AR models. In particular, we assume that the LFP
signal at discrete time bin k, denoted as yk, is the output of a
linear system driven by white Gausssian noise, nk. The linear
model is described by the following input-output difference
equation:

yk =

n∑
i=1

αiyk−i + ηk (1)

where yk is a random process indexed by k, n is the model
order, αi (for i ∈ {1, ..., n}) are model parameters, and ηk
is additive zero mean white Gaussian noise (error term).

Many methods exist for estimating the model parameters
αi. We use the least squares algorithm to estimate the
parameters on training data and then measure goodness-of-fit
on separate test data. In particular, we use the training data
of length N to define

y =
[
yn yn+1 · · · yN

]T

A =


yn−1 yn−2 . . . y0
yn yn−1 . . . y1
...

...
yN−1 yN−2 . . . yN−n

 (2)

α =
[
α1 α2 · · · αn

]T
η =

[
ηn ηn+1 · · · ηN

]T
and minimize ||Aα − y||2. Since the additive noise term is
Gaussian, minimizing the least squared error is equivalent to
maximizing the likelihood function [12].

Once the model parameters are estimated, test data is used
to validate the model. Model fit is quantified by calculating
the normalized 2-norm of the model residual, defined as
[modelfit] = ||residuals||2

||signal||2 . The normalized residuals pro-
vides a measure of the relative amount that the predicted
LFP signal deviates from the actual LFP signal.

B. State Space Representation

AR model parameters by themselves can provide informa-
tion related to the temporal dependencies in the LFP data. In
particular, the 2-norm of the parameter vector gives a notion
of the amount of such dependencies or ”memory” in LFP
activity. The larger ||α||2 indicates more dependency on past
values of LFP activity. That is, at some time k, yk strongly
depends on previous values. However, in this analysis, we
analyse the LFP activity by first constructring the equivalent
state space representation of the AR model.

We define the state vector at time k as

xk =
[
yk−1 yk−2 · · · yk−n

]T

TABLE I
STATE SPACE SYSTEM FEATURES

Model Feature: Symbol: Explanation:
Maximum eigenvalue

max(|λ{A}|)
System with any

of A eigenvalue magnitude
greater than 1 is not
asymptotically stable

Maximum singular
σmax{A}

The amount of
value of A temporal dependency in

the output signal
Minimum singular

σmin{A}
Indicates the smallest

value of A additive perturbation that
will make the matrix A
singular

Ratio: Maximum singular
σmax{A}
σmin{A}

This ratio indicates
value of A to minimum dominant modes of
singular value of A the system

Then the state space representation is:

xk+1 = Axk +Bηk (3)
yk = Cxk +Dηk

where

A =


α1 α2 · · · αn

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0


B =

[
1 0 · · · 0

]T
C =

[
α1 α2 · · · αn

]
D = 1

Equation 3 defines the state space difference equation. It
describes how the output yk is related to the states x and
the random noise η through a linear equation, and how x
evolves over time.

Modeling a process as a linear dynamical system in state
space form opens up new avenues of analysis. Among these,
computations performed on the state evolution matrix A
reveals important properties of the system model, including
stability, maximum amplification, and sensitivity to perturba-
tions. Table I lists the computations that may be performed
on the matrix A and what each represents.

We note that the maximum singular value indicates the
level of memory in the LFP acitivty as it is straightforward
to show that

σ2
max − 1 ≤ ||α||22 ≤ σ2

max (4)

III. RESULTS

We apply our method to LFP signals recorded from the
globus pallidus internus (GPi) segments in two patients with
generalized dystonia. Generalized dystonia is a movement
disorder characterized by sustained involuntary muscle con-
tractions that can lead to severe disability [13]. We focus
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our attention here to manifestations of dystonia in patients
with no clear confounding co-morbidities. Our aim is to find
quantifiable differences between neural signals originating
from unaffected GPi regions (regions in the GPi homunculus
that correspond to body parts that are not impacted by
the disease), and those that originate from affected GPi
regions of patients. We also compute standard PSDs to
show that these traditional measures do not show statistically
significant differences between the two groups studied.

A. Patients and Recordings

Two dystonia patients with idiopathic cervical dystonia
(abreviated TR and KW) received implantation of deep
brain stimulation electrodes in the globus pallidus inter-
nal (GPi) segment in accordance with standard surgical
procedures [14]. LFP signals were obtained from micro-
electrode recordings (microTargetingTMmT Electrodes, FHC
Inc., Bowdoin, ME, USA) during deep brain stimulation
electrode implantation. In all, there were 13 usable single-
channel trials from each patient, with average trial duration
of 124-s (max/min duration: 128/122-s). Simultaneous single
unit spiking activity was also recorded, but is not included
in this analysis. Electrode placement within the GPi was
verified by monitoring single-unit activity during electrode
advancement. Classification of each recording sight as being
”affected” or ”unaffected” was accomplished by identifying
the functional area (e.g. hand, wrist, etc.) associated with
each recording, and noting the presence or absence of dys-
tonic symptoms. A table summarizing the functional region
and affectedness state associated with each recording trial is
provided in table II.

Trials consisted of simple rest periods; though, both
patients exhibited active dystonic symptoms within trials,
which included involuntary muscle contractions. LFP signals
were sampled at 25-kHz using (National Instruments DAQ-
6014 16bits A/D converter, National Instruments Co., Austin,
TX, USA), amplified by 10,000 and band-pass filtered be-
tween 10-Hz and 10-kHz before being saved to file for post-
processing.

TABLE II
PATIENT INFORMATION AND ELECTRODE PLACEMENT

Patient TR Patient KW
Recording Recording

Trial No. Gpi Region Affected Gpi Region Affected
1 Ankle NO Knee NO
2 Ankle NO Wrist NO
3 Ankle NO Wrist NO
4 Ankle NO Elbow NO
5 Jaw YES Wrist NO
6 Tongue YES Head YES
7 Tongue YES Head YES
8 Head YES Head YES
9 Head YES Head YES
10 Head YES Head YES
11 Knee NO Head YES
12 Ankle NO Head YES
13 Ankle NO Head YES

Table II provides the GPi recording region and affected-

ness state for each trial number for patients TR and KW.

B. AR Model Estimation

Discrete LFP signals were processed in Matlab 2008a (The
Mathworks, Cambridge, MA) using the signal processing
toolbox and custom software. PSD plots were created for
the purposes of comparison of the AR method with a
more standard method. For the PSD computations, each
trial was separated into 1-s non-overlapping segments, and
computation of the Fourier transform-based PSD was applied
over all segments using a rectangular window. This level of
segmentation was chosen in an attempt to mitigate effects of
high frequency noise in the LFP signals, while balancing the
need for adequate frequency resolution.

To compute AR models, all 13 discrete LFP signals for
each patient were digitally filtered using a moving-average
decimation algorithm, implemented with a 250-order Finite
Impulse Response (FIR) filter, which down-sampled the LFP
data to 100-Hz. Each filtered signal was then separated into
25-s segments, each of which was further partitioned into
training and testing data vectors, with the leading 80% of
the contiguous signal flagged as train and the trailing 20%
flagged as testing.

Normalized residual 2-norm values were computed to
assess model fit for each AR model using each 25-s segment
of test data for each patient. Those models which provided
the most significant results (shown later) were models of
order seven and had mean normalized residuals of 0.147
for patient TR and 0.226 for patient KW. We believe this
magnitude of error is acceptable for this analysis.

C. AR Model Features

We computed each of the system features listed in Table I
for every 25-s segment of FIR-filtered LFP data, and for each
model order n = {1, · · · , n}. The model feature with the
most significant difference between affected and unaffected
regions for both patients was the maximum singular value.
This is indicated by difference-in-means, non-equal variance
t-tests performed between affected and unaffected feature
computations.

Figure 1 provides a visual representation of the maximum
singular value computation results for the best performing
model for both patients. This figure highlights the difference
in feature values between affected and unaffected GPi re-
gions, for models of order seven.

The other model features do not provide the same level of
difference between the affectedness states in these patients.

D. PSD Computations

Figure 2 shows the PSD plots of LFP signals. This analysis
was included to show the lack of progress in correctly
classifying LFP signals from GPi recording sights as being
either affected or unaffected on second-order statistics (the
PSD) alone. (A) and (B) display the mean power density
(solid line and 95% confidence bounds) across all 1-s LFP
segments recorded from un-affected GPi sites, averaged
within frequency bands. (C) and (D) show the same for
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* 

TR: Maximum Singular Value KW: Maximum Singular Value 

max sigma: unaffected 
(n = 31) 

max sigma: affected 
(n = 25) 

max sigma: unaffected 
(n = 21) 

max sigma: affected 
(n = 34) 

** 

Fig. 1. Maximum Singular Value - Stem and leaf plot of the maximum
singular value computations for AR models of order 7 for each patient.
*p-value = 1.95E-12. **p-value = 5.97E-5
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Fig. 2. Power Spectral Densities - Mean PSD plots (solid lines), averaged
within frequency bands, for both TR (A, B) and for KW (C, D). 95% error
bounds (dashed lines) computed from data of the opposite affectedness state
are displayed concurrently to illustrate the lack of statistically significant
difference between affected and unaffected GPi regions.

recordings in affected GPi sites. Although noticeable differ-
ences exist between patients, the statistical aggregate spectra
do not significantly differ between affected and unaffected
regions within patients.

IV. DISCUSSION

AR modeling is widely used in several domains. Cassidy,
et. al. employed a variation of the method proposed here, but
chose a different route for analysis [10]. They used dynamic
multivariate autoregressive (MAR) models to investigate the
non-stationary coherence among LFP signals in the STN and
GPi, and with electroencephalography (EEG) signals.

We have taken that analysis in a different direction by
producing state space system representations of the AR
models and analysing the transition matrix properties in
the state evolution equation. As seen above, the maximum
singular value feature of the AR-based state space models
depict the most significant difference between unaffected
and affected GPi regions, indicating that the max(σ(A))

may have broader underlying meaning in the context of LFP
analysis. In system’s theory, max(σ(A)) indicates the level
of temporal dependencies in the data.

Could this mean that the response of the GPi on LFP
signals is muted in regions corresponding to muscle groups
afflicted with dystonia or that the neural circuit loses memory
in afflicted regions? To better decipher the system’s response
characteristics, it is necessary to control the input signal by
way of modulating LFP activity within the GPi. However,
due to limitations on intra-surgical experimentation meth-
ods, we were unable to generate the system input stimulus
required to build more complicated models.
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