
  

  

Abstract—Low-power devices that can detect clinically 
relevant correlations in physiologically-complex patient signals 
can enable systems capable of closed-loop response (e.g., 
controlled actuation of therapeutic stimulators, continuous 
recording of disease states, etc.). In ultra-low-power platforms, 
however, hardware error sources are becoming increasingly 
limiting. In this paper, we present how data-driven methods, 
which allow us to accurately model physiological signals, also 
allow us to effectively model and overcome prominent hardware 
error sources with nearly no additional overhead. Two 
applications, EEG-based seizure detection and ECG-based 
arrhythmia-beat classification, are synthesized to a logic-gate 
implementation, and two prominent error sources are 
introduced: (1) SRAM bit-cell errors and (2) logic-gate 
switching errors (‘stuck-at’ faults). Using patient data from the 
CHB-MIT and MIT-BIH databases, performance similar to 
error-free hardware is achieved even for very high fault rates 
(up to 0.5 for SRAMs and 7x10-2 for logic) that cause 
computational bit error rates as high as 50%.       

I. INTRODUCTION 
ECENTLY, biomedical sensors and stimulators have 
emerged, offering unprecedented modalities for  both 

acquiring physiological signals and for chronically delivering 
therapy (e.g., conformal implanted/surface electrode arrays, 
deep-brain stimulators, etc.). In order to take advantage of 
these in intelligent, closed-loop systems, computational 
platforms are required that allow high order models of the 
physiological signals to be applied so that specific states of 
interest may be detected. The challenge is that these platforms 
must operate robustly and at highly constrained power levels 
(i.e., 10-100μW for implantable devices and 1-10mW for 
wearable devices). 
 In ultra-low-power platforms, however, hardware errors 
are becoming increasingly prominent [1]. These originate 
from transistor variability, manufacturing limitations, device 
aging, transient events, etc. For instance, aggressive 
supply-voltage reduction minimizes energy in digital circuits 
but rapidly increases SRAM, logic-switching, and timing 
errors [1]. Conventional margining approaches against these 
leads to intolerable overheads [2], and thus alternate methods 
have recently emerged for low-power sensors to more 
efficiently handle hardware errors. These have collectively 
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been referred to as stochastic computation [3]. They, for 
instance, have involved micro-architecture enhancements in a 
processor to include stages in the pipeline for detecting errors 
and then re-performing the computation when these occur [4]. 
Other approaches use redundancy, employing either 
estimators or soft voters with differing error characteristics in 
order to reduce the likelihood of errors [3]. Programmable 
platforms have also emerged that notice the need to retain 
reliability in the computation control flow; these incorporate 
reliable cores for error-free control while permitting relaxed 
reliability for the data computation cores [5]. 
 In this paper, we present a data-driven approach to 
stochastic computation that permits very large error rates to 
be handled with nearly no additional on-line overhead or 
redundancy. Data-driven methods have emerged as a 
powerful approach for modeling patient signals [6]. This has 
come about first due to the large-scale availability for 
physiological data in the healthcare domain, and second due 
to the advancement of machine-learning techniques that 
provide extremely efficient methods for analyzing large 
datasets and extracting correlations into accurate models. 
These methods have recently begun to be incorporated into 
ultra-low-power devices [7]. We describe how the modeling 
capabilities of these methods can be exploited to accurately 
model not only the physiological signals, but also the specific 
manifestations of hardware computation errors that affect 
their processing. This leads to an error-aware model that 
provides high resiliency even when the fault sources affect 
high-order bits. We synthesize two applications to a 
logic-gate level implementation: (1) seizure detection based 
on electroencephalographs (EEGs); and (2) 
cardiac-arrhythmia beat classification based on 
electrocardiographs (ECGs). We introduce hardware errors 
corresponding to two prominent fault sources, and using 
patient data from the CHB-MIT [8, 9] and MIT-BIH [8] 
databases, we demonstrate how detection performance is 
restored despite high error rates.        

II. DATA DRIVEN STOCHASTIC COMPUTATION 
A. Overview 
Data-driven stochastic computation is based on the use of 

machine-learning classifiers for biomedical detection. These 
(1) model the physiological correlations in the signal 
biomarkers, and (2) allow that model to be adjusted to 
account for perturbations in the correlations that result due to 
hardware computation errors. Fig. 1 shows the structure of 
data-driven algorithms, illustrated by the representative 
applications considered in this work. Biomarkers are specific 
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parameters in the patient signals that have some correlation 
with the physiological states we are interested in detecting. 
For seizure detection (Fig. 1a), information is contained in the 
spectral energy distribution of a patient’s EEG. Biomarkers 
thus consist of the spectral energy extracted using a bank of 
modulated filters (and energy accumulators) applied to each 
EEG channel [10]. For the arrhythmia detection (Fig. 1b) 
algorithm, biomarkers consist of a wavelet transform applied 
to the patient’s ECG during each heartbeat segment [11]. In 
both cases, the biomarkers are then interpreted by treating 
them as a feature vector for classification via a support vector 
machine (SVM). 

 
Fig. 1: Algorithms for (a) seizure detection [10] and (b) cardiac- 
arrhythmia beat classification [11]. The EEG and ECG signal biomarkers 
form the respective feature vectors for classification.   

 SVMs are widely used machine-learning classifiers that are 
popular due to their computational efficiency. They require 
an initial training phase where pre-labeled feature-vector data 
is provided and used to derive a set of support vectors. The 
support vectors ( isv ) represent the decision boundary 

(illustrated in Fig. 1) through the following computation, 
where the incoming data (represented by the feature vector 
x ) is classified based on the resulting sign (a radial basis 
function (RBF) SVM kernel is shown): 
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(N is the number of support vectors, M is the feature-vector 
dimensionality, and σ is a training parameter (αi, yi, and b are 
other kernel parameters)). 

SVMs allow complex decision boundary modeling over a 
multi-dimensional information space (i.e., feature space), and 
they provide efficient methods for developing new models 
based on labeled datasets. These factors have enabled 
biomedical detectors with high specificity despite the 
patient-to-patient variability and numerous physiologic 
variances exhibited by practical signals. As described below, 
however, these factors can also be exploited towards 
modeling and overcoming hardware errors.      

B. Modeling Hardware Errors 
Fig. 2 illustrates the concept of modeling hardware errors 

using an SVM. The biomarker features result in clusters in the 

feature space (e.g., corresponding to seizure and non-seizure 
data). However, hardware errors in the biomarker extraction 
computation alter the clusters, as shown in Fig. 2b (for 
illustration, a 2-D feature space has been derived using 
principle component analysis (PCA), and errors have been 
introduced as described in Section III.B). By training the 
SVM on the new clusters, the classifier performance can be 
restored, leading to the error-aware decision boundary. Since 
SVMs can offer a high degree of flexibility in the decision 
boundary over all of the feature dimensions, diverse and 
large-magnitude changes can be handled. Thus, this approach 
is not limited by the severity of the errors, but rather by how 
they degrade the cluster separation between the classes. 
Section III.C shows that errors of a high rate and magnitude 
can be overcome for actual patient data. 

 
Fig. 2: Scatter plots from PCA of EEG features for seizure detection for 
the cases (a) without hardware errors and (b) with hardware errors (20% 
SRAM errors). The SVM decision boundaries are shown, illustrating how 
an error-aware boundary can restore detector performance.  

C. Generating and Applying Error-aware Models 
The generation and application of an error-aware model 

requires (1) error-free classifier kernel computation (i.e., Eq. 
1) and (2) training of the classifier using data affected by the 
actual feature computation errors. The classifier kernel has 
the benefit that it is standard across applications; feature 
computation, on the other hand, is variable from 
application-to-application and, potentially, patient-to-patient 
due to the range of clinical considerations affecting the 
precise choice of biomarkers. Low-power implementations of 
the classifier are thus possible, especially using dedicated 
hardware [12].  

In order to train the classifier, a set of feature vectors is 
required that have been derived using the error-prone 
hardware and that have been assigned class labels 
appropriately. Labeling of the error-affected data can be 
accomplished by a variety of methods. Conventionally, 
detectors have relied on patient admission for parameter 
tuning. However, in Section III.D, we also consider the 
system in Fig. 3, which uses a temporary auxiliary device for 
automatic generation of the labels. The auxiliary device does 
not provide alarms in response to hardware errors, but 
rather labels based on the error-free processing. Such a 
device can be realized within the permanent device by 
temporarily placing it in a low-error (but higher energy) 
mode (e.g., through the use of dynamic voltage scaling [13]). 
Then, detector training can proceed on an infrequent or 
one-time basis.  
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Fig. 3: Error-prone permanent system with temporary error-free auxiliary 
system to provide labels for the error-aware model generation. 

III. EXPERIMENTAL DEMONSTRATION 

A. Logic-gate Implementation of Feature Processing 
The feature-extraction processing for the seizure- and 

arrhythmia-detection algorithms is synthesized to a library of 
logic gates for a 130nm IBM CMOS technology. Fig. 4a 
shows the implementation for the seizure detector. It consists 
of a decimation filter to down-sample the EEG data for the 
spectral range of interest. This is followed by seven FIR 
band-pass filters and absolute-value accumulators to 
represent the spectral energy over 2 seconds in each bin. This 
results in 7 features per channel, and the processing is applied 
over 18 channels and over 3 time windows to form a feature 
vector of 378 dimensions. 

Fig. 4b shows the implementation for the arrhythmia 
detector. A Daubechies 4 wavelet transform is applied over 
256 samples of the ECG.  The eight-stages are formed using 
4th order FIR filters, and they give a total of 256 features.       

 
Fig. 4: Feature extraction implementation for (a) seizure detector and   (b) 
arrhythmia detector. 

B. Introducing Hardware Errors 
Two types of hardware errors that are of primary concern 

in emerging low-power devices [1] are separately introduced. 
SRAM errors are introduced by randomly flipping bits in the 
stored filter-tap values, and logic errors are introduced by 
randomly inserting stuck-at-1 or stuck-at-0 faults at nodes in 
the gate-level netlist. These result in high bit-error rates and 
high error magnitudes. As an example, Fig. 5 shows the RMS 
error for each feature (normalized to the error-free RMS value 
of the feature) for the case of 20% SRAM bit-cell errors 

applied to the seizure detector. For most of the features, the 
RMS error is larger than the RMS value of the feature itself. 
Fig. 6 shows the feature error distributions for four 
representative features, illustrating that, in addition to large 
magnitude, the errors have highly irregular distributions.   
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Fig. 5: RMS error by feature (normalized to RMS value of each feature), 
for 20% SRAM bit-cell errors in the seizure detector. (Note: features are 
intentionally plotted in order of decreasing normalized error.) 
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 Fig. 6: Representative error distributions for four features for 20% SRAM 

bit-cell error s in the seizure detector.  

C. Performance Results 
To evaluate the performance of error-aware modeling, 

patient data from the CHB-MIT and the MIT-BIH databases 
are used for the seizure- and arrhythmia-detection 
applications respectively.  The performance depends on the 
ability of the classifier to discriminate between feature 
vectors of the positive class (e.g., seizure/arrhythmia data) 
and those of the negative class. Qualitatively, the benefit of 
the error-aware model can be seen by the sample histograms 
of Fig. 7. These correspond to the classifier output for seizure 
detection in (a) the baseline case (i.e., no errors), (b) the case 
with errors (10% SRAM bit-cell errors), and (c) the case with 
errors, but using an error-aware model, showing how the 
detector’s ability to separate the classes is restored. 
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Fig. 7: SVM classification histograms for seizure detection (a) without 
errors (baseline), (b) with 10% SRAM errors, and (c) with 10% errors, but 
using an error-aware classifier model. 

Fig. 8 shows the performance for seizure detection versus 
SRAM bit-cell error rate (the resulting BERs in the feature 
vectors are shown in parenthesis). The sensitivity is 
represented by the true-positive rate, and the specificity is 
represented by the true-negative rate. While the sensitivity of 
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the original detector degrades to nearly zero, that with the 
error-aware model remains high even at very high error rates. 
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Fig. 8: Seizure detector performance with SRAM bit-cell errors using (a) 
true-positive rate to represent sensitivity, and (b) true-negative rate to 
represent specificity. The BER is shown in brackets, though this is not 
directly correlated with the magnitude of the feature errors nor the ability 
to recover from errors. 

For the logic errors, the error-aware mode was found to 
consistently restore performance for fault rates up to 1x10-4 
errors/node (corresponding to over 5 nodes in the design). 
Although higher error rates were sustainable, the actual 
performance depends on the specific nodes affected, and thus 
at higher rates, the performance was not consistent from 
run-to-run. Fig. 9 shows results over 10 runs for the 1x10-4 
case. Here, false-positive rate is used to represent specificity 
rather than true-negative rate, since this indicates 
degradations more clearly when the negative class (i.e., 
non-seizure class) consists of disproportionately more data. 
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Fig. 9: Seizure detection performance with logic fault rate of 1x10-4 
errors/node (over 10 runs). The error-aware model restores the specificity, 
as indicated by nearly 0% false positive rate. 
Corresponding results for arrhythmia detection are shown 

in Fig. 10 and 11. Although the sensitivity and specificity do 
not degrade to zero, both saturate at <50%, indicating no 
substantial class separation without the error-aware model. 
For logic faults, rates of 7x10-2 are consistently overcome.  

D. System Demonstration 
Instead of pre-labeling to retrain the classifier to an 

error-aware model, Fig. 12 considers the system in Fig. 3, 
where the class labels are derived using a temporary, 
error-free auxiliary system. As shown for both seizure and 
arrhythmia detection, performance similar to ideal 
pre-labeling is achieved, and the error-aware model retains 
performance similar to the error-free case. 
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 Fig. 10: Arrhythmia detection performance with SRAM bit-cell errors 
using (a) true positive rate to represent sensitivity and (b) true negative rate 
to represent specificity. 

  
Fig.11: Arrhythmia detection performance with logic error rate of 7x10-2 

per node (10 runs). Error-aware model restores the performance. 

 
Fig. 12: Comparison of error-aware models generated by perfect labeling 
with those generated by auxiliary-system labeling for (a) seizure detector 
and (b) arrhythmia detector having SRAM bit-cell errors. 
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