
 

 

 

  

Abstract— In the context of drug resistant partial epilepsy, 

intra-cerebral electrical stimulation (Deep Brain Stimulation) 

constitutes one of the means of investigation to locate epileptic 

volume. This exogenous source can then activate the underlying 

epileptic networks and generate an electrophysiological 

reaction. The purpose of this work is to estimate and eliminate 

the overlapping electrical stimulation signal in order to 

subsequently explore the provoked underlying electrical 

activity. We propose here several methods to tackle this 

problem, using two different approaches based on different 

assumptions: BSS approach based on Independent Component 

Analysis (ICA) and non parametric decomposition - empirical 

modes decomposition (EMD) algorithms. 

I. INTRODUCTION 

The general framework of this paper is the processing and 

the analysis of the electrical signals generated by different 

brain areas and recorded by intra-cerebral electrodes. This 

recording technique, Stereo-ElectroEncephalography 

(SEEG/depth EEG), is based on surgically implanted 

electrodes and it is exploited for drug-resistant epileptic 

patients candidates to surgery [3, 5, 8]. The main objective is 

to contribute to a precise localization of the epileptic zone 

and/or the epileptic network, needed before a possible 

surgical removal. In some cases, electrical stimulation is 

used to provoke clinical manifestations in order to detect 

which brain areas and functions are affected by the disease.  

However, in order to access this underlying brain activity, 

one needs to distinguish between the propagated electric 

potentials (due to the stimulation) and the electrophysio-

logical sources (generated or inhibited by the neuronal 

structures). The stimulation can be seen as a perturbation 

that has to be eliminated in order to analyze the signals 

produced as the response to the stimulation. Indeed this 

generator can evoke an electrophysiological reaction of the 

excited cerebral processes. However, this phenomenon 

which occurs during the stimulation can arise with low 

energy in relation to DBS.  If some clinical symptoms 

appear to be characteristics of an epileptic seizure, then the 

stimulated zone can be regarded as epileptogenic. In fact, it 

is necessary to exploit a propagation model to understand 

and interpret how electric stimulation is propagated through 

the process. Moreover, the objective is to separate the 
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stimulation considered here to be a perturbation source for 

the brain processes. 

In the hypothetical case where the signal generated by 

DBS and the model of propagation were both perfectly 

known and validated, then the extraction of stimulation 

would be easy. Nevertheless, the model should take into 

account the contact of the electrode stimulation and the 

characteristics of brain tissues which are not clearly defined. 

In fact for this study we choose not to introduce a model of 

this signal. 

 
Fig. 1 Depth electrodes implantation scheme 

The aim of this paper is to present several techniques in 

order to separate the stimulation activity from the 

background brain activity. The next section is dedicated to 

the acquisition protocol and it is followed by a modeling 

section. Next, we present the developed methods to identify 

the perturbation and we compare and discuss the obtained 

results. 

II. DATA ACQUISITION 

A SEEG recording of 14 patients was studied from 

intracerebral electrodes (Dixi Medical, Besançon, France) 

placed into the brain. The electrodes were not uniformly 

distributed in the brain, but were established according to the 

suspicion of the epileptic area. SEEG and video monitoring 

were performed using a Micromed® SystemPlus acquisition 

system. The signal was recorded at a 512 Hz sampling rate 

on a 128 channel amplifier (LTM 128 Headbox; Micromed, 

Italy). Electrical stimulation was injected as dipolar source 

between two contiguous contacts of one electrode. For one 

patient stimulating contact could vary between electrodes 

and between contacts of one electrode. We focus here on the 

specific type of stimulation using a current source that 
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delivers a periodic pattern p(t) (1): 
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where the amplitude A can vary from 0.2 to 3 mA, the period 

T = 20 ms and pulse width τ = 0.5 ms (see Fig. 2). The 

spectrum is thus made up the various harmonics. 

An example of 40 ms of recording during stimulation is 

presented in Fig. 3. 
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Fig. 2 Modeled stimulation. 
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Fig. 3 Measured signals after the anti-aliasing filter. 

III. PROBLEM  FORMULATION 

SEEG is the electrical activity measured in the brain 

produced by the electrical neuronal sources. The model of 

the SEEG activity is based on the quasi-static approximation 

of Maxwell’s equations. Thus, the SEEG can be represented 

by a linear instantaneous mixture of dipolar sources. Under 

this assumption and in the absence of the stimulation, the 

electrical potential affecting the electrode i can be modeled 

as the weighted sum of different brain dipolar sources and 

the noise: 
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where 
ji

a
,

 is the propagation (mixing) coefficient between 

the j-th source 
j

s  and the i-th electrode. The external 

stimulation artifact appears in the model as a perturbation 

source by adding a weighted (propagated) stimulus signal to 

the measured signals in (2): 
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where )()(
,,

tsatb
ppipi

⋅=  is the contribution of the per-

turbation source 
p

s  at the electrode i, and )()(
,,

tsatb
jjiji

⋅=  

is the contribution of the source 
j

s  at the electrode i. Ac-

cording to (3), we can reconstruct the depth EEG potentials 

not affected by the stimulation by estimating the mixing 

(propagation) coefficients 
pi

a
,

 and the perturbation 

source
p

s . In the case of an independent stimulation signal, 

this problem can be solved by a BSS approach. 

Nevertheless, even if the stimulation signal was independent 

from the brain activity at the beginning of the process, some 

brain activity can be generated and then synchronized with 

the stimulation pattern producing correlated activity. 

Another possible approach in order to estimate the 

stimulation signal from the observed mixture is the 

Empirical Mode Decomposition (EMD) method. The 

advantage of this method over classical BSS is that it does 

not need any assumption about the observed mixture and its 

components are not necessarily independent or non-

correlated. 

IV. METHODS 

A. Empirical Mode Decomposition (EMD) 

In general the EMD is a nonlinear and non-stationary 

data-driven decomposition method (N. E. Huang et al., 

1998). EMD decomposes the signal into one finite set of 

Intrinsic Mode Functions (IMFs) which give the original 

signal when added together. The algorithm of EMD for a 

given signal )(tx can be summarized as: 

1. Find all extreme points of )(tx . 

2. Interpolate between all maxima and minima points 

(separately), to obtain the upper and lower envelope. 

3. Compute the mean m1 of both envelopes. 

4. Extract the detail 
11

)( mtxh −=  

5. Repeat the steps 1 to 4 for k iterations (until detail hk 

can be considered as
k

hIMF =
1

), due to errors which can arise 

by spline fitting processes. 

6. Apply steps 1 to 5 for the residual 
jjj

hrr −=
−1

 in order 

to obtain all the IMFs of the signal (for the first resi-

dual
11

)( htxr −= ). 

The algorithm ends when a monotonic signal is found to 

be residual. 

In favour of EMD it has been shown from other similar 

methods like wavelet-like decomposition, that it decomposes 

a signal in a natural way without prior knowledge about the 

signal of interest embedded in the data series [4]. 

In our study of stimulation extraction, we use two 

modified versions of EMD:  
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• EMD presented in [10] is a modified version of Huang 

[6] in the 5
th

 step (see the section IV. A). This is 

called EMDr further in the text. 

• Multivariate EMD proposed in [9] which generates 

multiple n-dimensional envelopes by taking signal 

projections along different directions in n-

dimensional spaces; these projections are then 

averaged to obtain the local mean. The direction 

vectors for taking projections are chosen to be based 

on polar and spherical coordinate system. This 

algorithm is later referred to as MEMD. 

The measured EEG signal can be represented as a sum of 

Intrinsic Mode Functions (IMFs) as: 
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where M is the number of IMFs. 

To estimate IMFs related to the perturbation source
p

s , we 

used the sum of the first intrinsic mode functions as: 
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where k is the index of the first local minimum of the 

correlation function ),()( , jiii IMFxCorrj =µ  and it is 

calculated as: 

                                    )(minarg jk i
Mj

µ
<

= .                     (6) 

We choose the sum of first IMFs as perturbation source 

because of high frequency components contained in the 

stimulation pattern. 

B. Blind Source Separation Approach (BSS): Independent 

Component Analysis (ICA) 

The objective of blind source separation is to recover all 

the independent sources from the observed measures. In 

general, these observations are modeled as a linear mixture 

of independent sources, both the mixing system and the 

sources being unknown [2]. 

The classical instantaneous linear mixing model is written 

                                          Asx =  ,                                  (7) 

where x is a vector of observed data, A is the unknown 

mixing matrix and s is the vector of independent unknown 

sources. 

In order to estimate the original sources, a reverse linear 

transformation B must be obtained such as: 

                                         Bxs = .                                      (8) 

Thus, source separation algorithms try to find an estimate 

of the matrix B. In the BSS framework, there are two major 

families of algorithms, those based on High Order Statistics 

(HOS), like fastICA [7], and those based on Second Order 

Statistics (SOS), like SOBIRO [1]. 

EMD (estimated stimulation): from one of the electrode 

measurements we estimate the Intrinsic Mode Functions 

(IMFs) by using the EMD algorithm, then we perform the 

subtraction between the measured signals and the sum of 

IMFs needed to construct the stimulation as follows (valid 

for both EMD versions):  

                                        
EMDpEMD ,

ˆˆ sxx −=  .                        (9) 

BSS-fastICA (estimated source and coefficients): 

assuming both the source and the propagation coefficients to 

be unknown, we estimate both of them by BSS. Normally, to 

obtain artifact free brain signals, the undesired source 

(stimulation signal
p

s~ ) is chosen according to (10) and 

subtracted, weighted by the corresponding estimated mixing 

coefficients and the solution given by BSS (fastICA or 

SOBI) is: 

                                        
BSSpBSS ,3

ˆˆˆ skxx ⋅−=  .                 (10) 

V. RESULTS 

We have applied stimulation estimation methods 

(presented in section 2) to 243 selected stimulations from 14 

patients. However, to reduce the amount of data, we used 

those contacts, which belong to the stimulating electrode, 

because with them stimulation is measured with more 

energy. Finally, we acquired 2330 measurements of 9.8 

contacts per stimulation on average. 

In order to analyze in detail the efficiency of each method 

for all stimulation measurements, we have correlated the 

estimated stimulation (from different methods) with a one 

second long pattern of stimulation, taken from a clear, low 

noise measurement where no evidence of the cerebral 

activity was visible. The results for EMD are presented in 

the table 1. 
TABLE 1 

ANALYSIS OF EMD METHODS. MEAN CROSS-CORRELATION WITH PATTERN.    

Method k* IMF1 IMF2 k=2 k=3 k=4 

MEMD 0.860 0.511 0.319 0.881 0.878 0.871 
EMDr 0.856 0.499 0.311 0.876 0.873 0.861 

* IMFs are chosen, calculating indexes as shown in (6). 

In table 1, for different selections of IMFs, we calculate 

the index memd: 

                        �
=

=

N

i

pippemd
sscorr

N
m

1

,
),(max

1 �
,           (11) 

where corr – cross-correlation, spp – pattern of stimulation,   

pi
s

,

�
– estimated perturbation source from ix and N – total 

number of measurements (from all patients).  In the first 

column, for calculating
pi

s
,

�
, IMFs are selected as indicated in 

(6), in the second and third columns – single IMF1 and IMF2, 

respectively, and in the others the sum of the first k
th

  IMFs 

is considered to be a stimulation source. We calculated the 

same mean cross-correlation given by (11) for ICA and 

SOBIRO estimated stimulation sources: 
TABLE 2 

INDEX OF CORRELATION FOR TWO ALGORITHMS OF BBS 

Method Index mICA 

Fast ICA 0.853 

SOBIRO 0.858 

As estimated stimulation for ICA and SOBIRO (table 2), 

we selected an independent source that gives the highest 
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cross-correlation with the stimulation pattern, because, as we 

could see in this study, combining independent sources does 

not improve the correlation. 

After estimating DBS, we visually inspected some stimu-

lation cases where the presence of an underlying cerebral 

activity had been verified by neurologists. One case is sho-

wn in figure 4, where a brain discharge starts after 3 seconds 

of stimulation. However, in figure 5, we presented the spec-

trum of the same data from which the stimulation is elimina-

ted using (8) and (9). The result spectrum (in red) is compar-

ed with the measurements (in blue). As we can see, the two 

types of methods resemble each other, but we presume that 

EMD separates stimulation from cerebral discharge more 

precisely, because fastICA and SOBIRO algorithms have 

left frequencies of the perturbation. 

 
Fig. 4. Spectrogram of stimulation and brain discharge activity (starting 

after 3 seconds, at 5-25 Hz frequencies). 

 
Fig. 5. FFT spectrum of EMDr MEMD, FastICA and SOBIRO stimulation 

eliminated data (in red) compared with data spectrum (in blue). 

VI. CONCLUSION 

We have presented one application in signal identification 

for SEEG signal processing methods based on different 

models with the same purpose of blind signal decompositi-

on. The first family of methods presented here is Blind Sour-

ce Separation (BSS). BSS has been successfully tested in 

many biomedical applications such as artifact detection.  

The second family is the Empirical Mode Decomposition 

(EMD). The EMD is based on a signal decomposition which 

does not follow a particular model for its decomposed sig-

nals, i.e. there is not a matrix of coefficients that relates the 

measured signals with its decomposed signals. EMD has 

already been used in applications on non-stationary biome-

dical signal decomposition for some time. In this paper, we 

have shown one application for the EMD in SEEG signals 

and we have obtained slightly better results than those pro-

vided with the classical BSS algorithms. Therefore, from the 

correlation results illustrated in table 1 for EMD and table 2 

for BSS, we can conclude that to identify DBS signal as pre-

sented here, BSS type methods are not the best choice. How-

ever, comparing EMDr and MEMD methods, we may say 

that the MEMD is very promising to analyze EEG and 

SEEG because of its multivariate nature. In further study we 

have planned to look at combined decomposition methods 

such as EMD together with ICA, SVD (Singular Value De-

composition) and SSA (Singular Spectrum Analysis) and use 

them for the applications of the SEEG signals (DBS together 

with epilepsy signals). 
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