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Abstract— In remote monitoring of Electrocardiogram
(ECG), it is very important to ensure that the diagnostic
integrity of signals is not compromised by sensing artifacts
and channel errors. It is also important for the sensors to be
extremely power efficient to enable wearable form factors and
long battery life. We present an application of Compressive
Sensing (CS) as an error mitigation scheme at the application
layer for wearable, wireless sensors in diagnostic grade remote
monitoring of ECG.

In our previous work, we described an approach to mitigate
errors due to packet losses by projecting ECG data to a random
space and recovering a faithful representation using sparse
reconstruction methods. Our contributions in this work are two-
fold. First, we present an efficient hardware implementation
of random projection at the sensor. Second, we validate the
diagnostic integrity of the reconstructed ECG after packet
loss mitigation. We validate our approach on MIT and AHA
databases comprising more than 250,000 normal and abnormal
beats using EC57 protocols adopted by the Food and Drug
Administration (FDA).

We show that sensitivity and positive predictivity of a state-
of-the-art ECG arrhythmia classifier is essentially invariant
under CS based packet loss mitigation for both normal and
abnormal beats even at high packet loss rates. In contrast,
the performance degrades significantly in the absence of any
error mitigation scheme, particularly for abnormal beats such
as Ventricular Ectopic Beats (VEB).

I. INTRODUCTION

For remote monitoring of ECG, it is extremely important
to maintain the clinical integrity of the signals. Continuous
monitoring of ECG is widely used in many clinical set-
tings, including Intensive Care Units (ICUs), post-operative
monitoring, emergency care and in ambulatory settings such
as Holter monitoring. As interpretation of continuous ECG
requires analysis of as many as 105 cardiac cycles per
patient per day, there has been a need for tools to perform
automated labeling and classification of ECG. American
National Standard Institute (ANSI) and Association for the
Advancement of Medical Instrumentation (AAMI) have es-
tablished standards for automated tools such as EC57 [1]
that are recognized by the FDA in United States. The tools
for implementing these protocols, along with ECG databases
and annotations by experts for normal and abnormal ECG
beats are available in public domain at [2], [3]. In this
work, we refer to annotations by experts as ground truth.
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Commercial ECG machines that provide automated labeling
and classification benchmark their classification performance
against the ground truth. While EC57 does not specify
minimum performance requirements for metrics such as
Sensitivity (Se – percentage of true events detected) and
Positive Predictivity (+P – percentage of detected events that
are true), it mandates that such performance metrics with
databases in [1] are disclosed. From a clinicians’ perspec-
tive, a wireless continuous ECG monitoring system should
provide diagnostic utility similar to that of a wired system in
current standard of care, while enabling non-intrusive form
factors for use in free living conditions. This means that
there should be no statistically significant degradation in
performance due to the wireless link. We observe that 2% or
more degradation in classification accuracy from a ”wired”
baseline performance is clinically significant and about 1%
packet loss rate (PLR) can cause significant degradation in
performance. In this work, we evaluate the proposed packet
loss mitigation approach with MIT and AHA databases using
a state-of-the-art commercial ECG arrhythmia classification
software and show that the performance does not degrade
even at high packet loss rates.

Packet losses occur in wireless networks due to fading,
interference, congestion, system loading, etc. Popular choices
for radios in Body Area Networks (BAN) such as Bluetooth,
Zigbee, etc. operate in the crowded 2.4 GHz band, along with
IEEE 802.11. In [4], the authors investigated the interference
of 802.11 traffic presented to ZigBee nodes in BAN and
found 33% − 56% packet loss rate, depending upon the
network setup. Another study [5] based on Zigbee reported
packet losses as much as 50% in a clinical trial involving
remote ECG monitoring. Note that the ECG signal can be
quite sparse in time domain, where important events like
QRS-complex occur over a short period of time. Thus, packet
losses can result in significant loss of clinically relevant data.
Previously, we identified the need for action and proposed an
approach to mitigate packet losses [6] based on Compressive
Sensing (CS).

CS is an emerging signal processing concept, wherein
significantly fewer sensor measurements than that suggested
by Nyquist-Shannon sampling theorem can be used to re-
cover sparse signals with high fidelity [7], [8], [9]. The
measurements in CS framework are generally defined as
inner-products of the signal with random basis functions.
CS relies on the assumption that the signal of interest is
sparse in some representation basis with only M non zero
elements, where M � N and N is the signal dimensionality.
These signals can be recovered faithfully if an order of
M · logN/M samples are available at the receiver, albeit with
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some additional computational complexity at the receiver.
We consider lost packets as random sampling by the wireless
channel and leverage CS to reconstruct the signal from fewer
measurements. We project ECG in to a random space, by pre-
coding at the sensor; this reduces sparsity in time and spreads
information over an entire frame. Each frame is divided into
multiple packets for transmission over the air. The receiver
is then able to reliably reconstruct samples in the Nyquist
domain, even under packet losses.

It is highly desirable for wearable sensors to last as long as
possible, preferably a week with user-friendly form factors,
in order to support early discharge from hospitals and home
monitoring. In [10], we presented software implementation
details and real-time validation of the the proposed approach.
Here, we present a power efficient hardware implementation
of CS pre-coding for a multi-lead wireless ECG sensor. This
enables us to offload computationally demanding operations,
including sensing artifacts mitigation, to receivers with better
battery budgets.

In Section 2, we review the CS operations for signal
measurements at sensor node and reconstruction at receiver
node. In Section 3, we describe our method for evaluating
the diagnostic integrity of received ECG signals. In Section
4, we present results of EC57 procedures on standard ECG
databases for both CS based source compression and CS
based channel error resiliency. We present conclusions in
Section 5.

II. CS OPERATIONS AT SENSOR AND RECEIVER

In this section we briefly review the CS framework for
sensing and reconstruction of sparse signals and present
applications in ECG telemetry.

A. Overview of CS based Error Mitigation

Consider a short term segment of a signal x(n), of length
N , denoted by an N−dimensional vector x with fs as its
Nyquist sampling frequency. Let the matrix W represent
basis functions, consisting of N×N elements. We normalize
each row of the matrix W such that the corresponding L2-
norm is equal to 1. The transform domain representation of
the signal, y, can be computed as

y = Wx (1)

Sparsity: x is an M−compressible signal if there are only
M significant components for a given transform W. Let the
total energy of the N -component segment be EN and the
total energy contributed by any group of M components be
EM . Then the number of significant components may be
obtained by finding the smallest M such that 1 − EM

EN
≤ ε,

where ε � 1. We call the ratio M
N as the sparsity ratio

and note that a smaller value of this ratio indicates higher
compressibility.

In this case, we call W as the sparsity basis. In the CS
paradigm, if one is able to construct a measurement matrix
H of dimension K×N that is statistically incoherent with
the sparse basis W, then only K measurements given by

r = Hx. (2)
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Fig. 1. Sparsity of ECG signals: blue and red plots represent sparsity ratios
in frequency and time domains, respectively.

are adequate to estimate y with a high probability of a small
reconstruction error provided [7], [8]

K ≥M logN/M. (3)

We observe that the ECG signal has both transient and
tonal components and a significant amount of energy is con-
centrated in very few coefficients in both time and frequency
domains. Figure 1 shows the distribution of sparsity for 172
records, comprising a total of 142 hours of ECG data from
the MGH database. The x-axis represents all possible values
of the sparsity ratio and the y-axis represents the number of
segments for a given sparsity ratio. We observed that in the
Discrete Cosine Transform (DCT) domain, the average value
of the sparsity ratio was 0.08 and for time domain 0.45. It
is clear from the graph that ECG signals are significantly
sparse in the DCT domain; thus the choice of DCT as W is
justified.

In the CS paradigm, smaller reconstruction errors are
obtained with fewer measurements if reconstruction is per-
formed in a sparse domain; however, if the measurement
domain is also sparse, then significant information may be
lost if K < N samples are measured.

It is clear from Figure 1 that ECG signals are quite sparse
in the time domain as well; the mean sparsity across the
database being only 0.45. This implies that random sampling
directly in time domain, as with a lossy wireless channel,
could result in loss of clinically relevant information.

In this work, we are concerned with packet loss mitigation.
We consider a lossy channel as performing random sampling
of ECG packets over the air and define Hc the sensing kernel
by the channel. Most communication protocols provide a Se-
quence Number or similar capability to identify the packets
were dropped by the channel. We use this information to
define a set S, consisting of the indices of ECG packets lost
in the channel. The packet loss rate is given by E[]S]/K,
where ]S denotes the cardinality of set S and E[·] represents
the expectation operator. Note that the cardinality of set S
is random because of the stochastic nature of the channel.
Given S, we can construct Hc, of dimension K×N formed
by starting with an N × N identity matrix and removing
rows indexed by the elements of S.
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As random sampling in time domain performed by the
channel will result in loss of clinically relevant information,
we project the the ECG signal in to a random space, prior to
transmission. Let this be the sensing kernel Hs of dimension
N×N , whose elements are independently chosen from the
symmetric Bernoulli distribution such that

Pr([Hs]i,j = 0 or 1) =
1

2
; 0 ≤ {i, j} < N. (4)

Using Hs from Eq. 4 in Eq. (2) results in N randomly
projected measurements denoted by r. This is sent over
the lossy channel as J discrete packets, each packet with
P samples of payload. The effective sensing kernel H to be
used in Eq (5) for reconstruction at the receiver is then given
by

H = HcHs. (5)

Incoherence: In Compressed Sensing, we require that the
measurement kernel H is incoherent with the representation
basis W . In this context, coherence µ is defined to be the
largest element of the product

√
NHW where both H and

W are N ×N matrices and bounded by 1 ≤ µ ≤
√
N . For

the Nyquist sampling, H is an identity matrix, maximally
incoherent with W, with µ = 1. It is well-known that
the construction of H as described in Eq. (4) generates
a universal CS encoder that exhibits low coherence with a
structured reconstruction basis like the DCT or FFT [11].

Our choice for Hs described in subsection II-B – a sparse
random matrix derived from a subset of a sequence of
Bernoulli random variable was driven by sensor power and
hardware complexity constraints. µ for this Hs and DCT
basis was 3.88, reasonably close to the lower bound.

Note that the product of Hc and Hs is still random and
incoherent with W since Hs is random by construction and
Hc is obtained by simply choosing a subset of rows from
Hs. Also note that this approach does not discriminate based
on the location of the lost measurements and all received
packets are of equal importance; therefore, it can handle the
bursty errors typically associated with wireless channels.

B. Sensor Side Processing

We consider that case where the sensing matrix Hs is
a square, N × N matrix that is also invertible and, hence,
full-rank. We implemented CS encoding as an online ma-
trix multiplication between Hs and x. To understand this,
consider the matrix multiplication r = Hsx where:

x = {xi}i=1:N

r = {ri}i=1:N

Hs = {hij}i=1:N,j=1:N

Then, the elements of the output r are given by:

rk = hk1x1 + hk2x2 + · · ·+ hkMxM (6)

where k = 1 : N . We can represent this operation as each
xi contributing the value hki ∗xi to the value of rk for each
k = 1 : M . In our memory optimized hardware realization,
for each incoming sample xi, we simply computed its partial

Fig. 2. Fully random (left) and sparse (right) Hs. Red regions indicate 1
and blue regions indicate 0.

contribution to each of the elements in the output vector y
and then discarded it.

The elements of the matrix Hs were chosen to be part of
a random P-N sequence. This was achieved by generating
a Linear Feedback Shift Register (LFSR) sequence corre-
sponding to each of the elements hij and quantizing them to
a one-bit value in {0, 1}. Thus, the matrix multiplication was
implemented as additions only, corresponding to the state of
the quantized LFSR output. It is also important to keep in
mind bit-growth due to the CS encoding operation. Suppose
that the incoming xi are b1 bits each. If the kth row of the
matrix Hs contains D ones, then the output rk will require
b2 = b1+ log2(D) bits if full resolution is to be maintained.
To reduce the memory required to store and the bandwidth
required to transmit r, one approach is to implement a sparse
matrix where the number of ones per row is small [12]. In
this work, the input x was 16 bits/sample and the memory
budget for the output r was 20 bits/sample. Therefore, we
constructed a matrix with a maximum of 16 ones per row to
allow for 4 bits of expansion.

For a real-time implementation, we utilized a double-
randomization scheme where each column ck of the Hs

matrix was a one-bit quantized output of a log2(N) LFSR
sequence starting at a seed sk. It is well known that a b-
bit LFSR sequence is cyclic with periodicity 2b − 1 and is
unique for a given starting seed s. Thus, by selecting an
LFSR sequence with a maximum length of N − 1 and a
quantization threshold, we were able to control the density of
ones per row. The quantization threshold was selected based
on the desired ones-density per row. In order to make the
columns statistically independent, the master LFSR sequence
that provided the quantized {0, 1} values to also point to a
starting seed sk for the kth column. Figure 2 is a graphical
representation of fully random and sparse Hs.

In [13], a similar double-randomization scheme was used
to perform CS random projections on biophysical signals
such as ECG, followed by under sampling to achieve com-
pression. Their random matrix (Hs) was of dimension 50×
1000 for CS based compression, in contrast with 128× 128
for CS based packet loss mitigation addressed here. They
demonstrate the efficiency of the scheme with a hardware
realization in 90 nm CMOS. The silicon area is 200µm
×450µm and consumes 1.9µW [13].
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Fig. 3. ECG Reconstruction example. A segment of the original waveform from record 203 of MIT-BIH is shown in top pane. The pre-coded data along
with packet losses (35% in this case) is shown in the middle pane. The reconstructed ECG waveform is shown in the bottom pane. The difference with
the original can be seen around 0 amplitude in the bottom pane. The labels at the bottom of top and bottom panes correspond to ground truth and Mortara
classifications, respectively.

C. Receiver Side Processing

On the receiver side, many approaches described in lit-
erature can be leveraged to reconstruct the Nyquist do-
main equivalent x̂ from the received signal r with missing
packets. Examples of such approaches include Gradient-
Projection based Sparse Reconstruction (GPSR) [14], Or-
thogonal Matching Pursuits (OMP) [15], [16], [17]. In our
work, we implemented a reconstruction using [17].

Fig. 3 shows a 6−second segment of ECG recording from
the record 203 of MIT-BIH database. Hs is a 128 × 128
matrix and each ECG frame is transmitted in 8 packets.
The middle pane shows the data in the random space, with
missing segments corresponding to packet losses. It can be
seen from the reference (top pane) and test (bottom pane)
annotations that there are two locations where an atrial
premature beat A was mis-categorized as a normal sinus
rhythm N. All the remaining beats were correctly classified
in this segment.

III. VALIDATION FOR DIAGNOSTIC GRADE ECG

As described in the Introduction, ANSI/AAMI specifi-
cation EC57 [1] provides a framework for validating the
performance of automated software tools that classify and
label large amounts of ECG waveform data resulting from
continuous monitoring. In this section, we present results
from applying these “current standard of care” protocols in
wired settings to wireless ECG monitoring. The databases we
consider are MIT-BIH Arrhythmia Database (48 records of
30 minutes each) and AHA database for ventricular arrhyth-

mia detectors (80 records of 35 minutes each). Overall, these
databases contain a wide variety of cardiac rhythms compris-
ing nearly 250, 000 normal and 22, 000 abnormal heart beats
from multiple subjects. All of the records in the databases
come with ground truth of annotations by cardiologists.
Commercial ECG machines that provide automated labeling
and classification benchmark their performance against this
ground truth. The metrics for beat classification performance
are Sensitivity (Se – percentage of true events detected) and
Positive Predictivity (+P – percentage of detected events that
are true), defined as follows [1]:

Se = TP/(TP+FN) (7)
+P = TP/(TP+FP) (8)

where,
• A correctly detected event is called a true positive (TP)
• An erroneously rejected (missed) event is called a false

negative (FN)
• An erroneously detected non-event is called a false

positive (FP)
• A correctly rejected non-event is called a true negative

(TN).
In this work, we implemented arrhythmia analysis and beat
classification using the Mortara algorithm. We re-sampled
each record at 500 Hz and scaled to 2.5 µV/LSB to meet
the specifications for ECG data as input to the Mortara
arrhythmia analysis library. The arrhythmia analysis library
was compiled into an executable to read the ECG records
and output measurements including heart rate, ST values,
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Fig. 4. Experimental setup for ECG validation

QRS amplitudes, etc. along with beat and event classification
such as normal sinus rhythm, pre-ventricular, ventricular
fibrillation, asystole, bigeminy, pause, etc. The algorithm
processes from 1 to 8 leads and can detect QRS complexes
as long as at least one lead is valid. The output from
Mortara is formatted such that it can be used directly with
EC57 tools for comparison with the ground truth annotations
by cardiologists provided in the databases. EC-57 requires
testing and disclosure of the algorithms’ sensitivity and
positive predictivity along with Root Mean Square (RMS)
heart rate error. The comparison may start after 5 minutes
from the beginning of the record. For a beat to be correctly
classified, the algorithm must identify the beat with correct
classification within 150 ms of the actual event.

Fig. 4 depicts the experimental setup used to validate the
packet loss mitigation proposed in this study. The black
path labeled ”Reference Annotations” represents annotations
of the ECG waveforms by experts ECG. The blue path
labeled ”Baseline Annotations” represents the current golden
standard in a wireline setting. Each cardiac database was
analyzed to provide a baseline performance measure to
confirm that introduction of compressive sampling did not
affect the system performance and to confirm that the system
performance of the test bed used for this paper provides
results that match those from prior EC-57 compliance tests.

The red path labeled ”Test Annotations” represents wire-
less case in this study. At the sensor, we used a sparse
Hs of size 128 × 128 as described in Section II-B. Note
that increasing the dimensions of Hs provides better recon-
struction accuracy, at the expense of increase in encoder
complexity and additional latency. It is essential from low
power perspective that the application layer is optimized for
a given radio in BAN. We experimented with 32 packets and
8 packets per frame, corresponding to 4 and 16 ECG samples
per packet, respectively. A bursty channel-error model was
used to drop packets at loss rates of 0.5%, 1%, 5%, 15%,
25% and 35%. The received data was reconstructed in to
Nyquist domain and provided to the Mortara arrhythmia
analysis algorithm to generate annotations.

IV. RESULTS

In this section, we evaluate the proposed packet loss
mitigation approach with MIT and AHA databases using

10
0

10
1

−60

−50

−40

−30

−20

−10

0

Packet loss rate (%)

P
e
rc

e
n

ta
g

e
 d

e
g

ra
d

a
ti

o
n

MIT−BIH: Degradation over baseline due to packet losses

 

 

Q Se (CS)

Q +P (CS)

V Se (CS)

V +P (CS)

Q Se (NyCS.)

Q +P (NyCS.)

V Se (NyCS.)

V +P (NyCS.)

Q Se (Nyq.)

Q +P (Nyq.)

V Se (Nyq.)

V +P (Nyq.)

Fig. 5. MIT-BIH Degradation. The legends Q and V correspond to normal
QRS sinus rhythms and abnormal VEB rhythms, respectively. The legends
Se and +P correspond to Sensitivity and Positive Predictivity, respectively.
The solid lines represent the CS based packet loss mitigation approach (CS),
the dashed lines represent the case with no random projections at the sensor
but with sparse reconstruction at the receiver (NyCS) and the dotted lines
represent the Nyquist domain data (NyQ), respectively.

a state-of-the-art commercial ECG arrhythmia classification
software and show that the performance does not degrade
even at high packet loss rates. We present EC-57 analysis
results, specifically Se and +P for normal beats Q (QRS
segments) and abnormal beats V (Ventricular Ectopic Beats,
VEB; also sometimes called Premature Ventricular Con-
traction, PVC) in the next section for MIT-BIH and AHA
databases.

Figures 5 and 6 present degradation in beat classification
as a function of packet loss rate for MIT-BIH and AHA
databases, respectively. The solid lines represent the CS
based packet loss mitigation approach (CS), the dashed lines
represent the case with no random projections at the sensor
but with sparse reconstruction at the receiver (NyCS) and
the dotted lines represent the Nyquist domain data (NyQ),
respectively. Specifically, Hs is as described in Section II-B
for CS, and identity matrix for NyCS and NyQ, respectively;
and the sparse signal reconstruction at the receiver is as
described in Section II-C for CS, NyCS and ”null” for
NyQ, respectively. Each ECG frame was packetized into 32
packets in this experiment. The legends Q and V correspond
to normal QRS sinus rhythms and abnormal VEB rhythms,
respectively. The legends Se and +P correspond to Sensitivity
and Positive Predictivity, respectively.

We observe that 2% or more degradation in classification
accuracy from a ”wired” baseline performance is clinically
significant. From Figures 5, 6 it can be seen that performance
degrades monotonically for both NyCS and NyQ, compared
with CS. This is particularly true for Sensitivity and Positive
Predictivity of abnormal rhythms (V), compared with normal
sinus rhythms (Q). The Positive Predictivity degradation is
also severe, suggesting more false positives, as packet loss
rate increases. Without some method of packet loss mitiga-
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Fig. 7. MIT-BIH: Heart Rate Estimation Error with packet loss conditions.

tion, a 1% packet loss rate can cause clinically significant
degradation. While the high packet loss conditions studied
here are corner cases, we believe that typical loss rates of
around 5% are typical for BAN modems in the crowded 2.4
GHz band. As a reference, packet loss rates of 1 − 3% are
commonly used to evaluate voice quality in 3G standards.

Figure 7 shows the performance of heart rate (HR) es-
timation for the MIT-BIH database, for different packet
conditions. The mean and standard deviation of Mortara
HR estimation error in percentage, against the reference HR
from the database for the baseline and various packet loss
conditions is shown. There were 8 packets per ECG frame
in this experiment. It can be seen that the HR estimation
is quite robust in the presence of losses, with the proposed
approach.

V. CONCLUSIONS

In this work, we addressed the challenges of packet losses
in wireless ECG monitoring. We reviewed the ANSI/AAMI

framework for validating the performance of automated
software tools that classify and label large amounts of
ECG waveform data resulting from continuous monitoring in
current standard of care. We observe that 2% or more degra-
dation in classification accuracy from a “wired” baseline
performance is clinically significant. We show that, without
some explicit packet loss mitigation, packet loss rates as
low as 1% can cause clinically significant degradation. We
presented a brief overview of CS principles and proposed a
packet loss mitigation scheme that consumes very low power
at the sensor node. We validated the proposed approach with
MIT-BIH and AHA databases and show that sensitivity and
positive predictivity of arrhythmia classification is statisti-
cally similar to that of “wired” baseline at moderate packet
losses observed in typical wireless networks.
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