
  

  

Abstract—We introduce a system that tracks patients in a 
Mass Casualty Incident (MCI) using active RFID triage tags 
and mobile anchor points (DM-tracks) carried by the 
paramedics. The system does not involve any fixed 
deployment of the localization devices while maintaining a 
low cost triage tag. The localization accuracy is comparable 
to GPS systems without incurring the cost of providing a GPS 
based device to every patient in the disaster scene. 
 

I. INTRODUCTION 

Tracking paramedics and patients is a fundamental 
functionality of various MCI response information systems 
such as DIORAMA[1], WISSARD[2], CodeBlue[3], and 
AID-N[4]. Accurate and up-to-date paramedics and patient 
location is the key for the incident commander to gain 
situation awareness, allocate resources and coordinate 
evacuation. In this paper, we focus on tracking patients 
without the need of fixed infrastructure deployment. 

In existing systems, [1,2,3] RF receivers are deployed 
throughout the incident area as anchors. The density of  
deployment and the amount of time needed to calibrate the 
system may vary for different RF localization technologies. 
However, for rescue efforts in a mass casualty incident, every 
second wasted on system deployment can mean a difference 
of life and death. GPS devices can be used to locate 
paramedics and patients which does not require the 
deployment of specialized RF localization devices. However, 
GPS tags are power hungry and costly. In our system each 
patient is tagged with an active RFID tag denoted as D-tag. 

In this paper, we introduce a tracking framework 
particularly customized for MCI localization by using 
moving paramedics as mobile anchor points to locate patients.  
Each paramedic carries a DM-Track device that includes an 
active RFID reader and a Smartphone (e.g. Android based). 
The location of the paramedics carrying DM-track devices is 
determined by the GPS embedded in the Smartphone. The 
DM-tracks constantly receive active RFID beacons sent by 
the patients’ D-tags. This architecture eliminates the need to 
deploy numerous localization devices, while keeping the size 
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and cost of patient triage tags down.  
Localization using moving anchor points has been 

investigated in wireless sensor networks. In large wireless 
sensor networks, it is prohibitively expensive to equip each 
mobile node with a GPS device. Thus a few nodes equipped 
with GPS devices are used as mobile anchor points to locate 
other nodes [5, 6, 7]. However, in wireless sensor networks, it 
is generally assumed that the nodes to be localized are static 
once deployed. Therefore, most of the papers developed 
localization algorithms that are applied repetitively to update 
node location, with no or limited mobility model for tracking. 
In contrast, the patients in a mass casualty incident  may move 
to new locations from time to time, and need to be tracked 
continuously.  

The paper is organized as follows. In the next section we 
introduce the system architecture. The recursive tracking 
algorithm is presented in Section III. Section IV describes the 
experiments and Section V concludes the paper. 

II. SYSTEM ARCHITECTURE 

In the triage phase the paramedics determine the triage 
status of each patient (black, red, yellow and green) and tag 
them with the appropriate color paper tag along with a D-tag 
(active RFID tag). The paramedic carries a DM-Track which 
includes a  Smartphone ( e.g. Android based platform) as well 
as active RFID reader. 

 The active RFID reader collects the D-tags’ ID and 
severity of injury as well as the received signal strength of the 
RFID beacons. The active RFID reader is interconnected to 
the Android Smartphone using the Bluetooth interface. The 
Android Smartphone interconnects to the Internet through the 
cellular or WiFi network.  

The DM-Tracks transmit to the server the following 
information:  1) the beacon information along with the 
received beacon signal strength for each D-tag in its range, 
and 2) the GPS readings obtained from the Android phone. 
 The recursive tracking algorithm, which is described in the 
next section, will continuously update the patients location by 
fusing the D-tags beacon measurements from all available 
paramedics along with their GPS information. 

III. RECUSIVE TRACKING ALGORITHM 

Recursive tracking of a patient using RFID measurements 
from the DM-track devices carried by the paramedics in the 
vicinity of the patient has the following three challenges: 

Challenge 1) At a particular time, the current estimate of 
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the patient location cannot be approximated by a parametric 
model very well. For example, with one or two paramedics 
nearby, the distribution of the patient location is of a ring 
shape distribution and a two modal distribution respectively.  

Challenge 2) The measurement model is non-linear even 
for the free-space attenuation model, and becomes more 
complicated when the inaccuracy of the paramedic location 
given by GPS, and likelihood of an obstacle need to be taken 
into consideration.  

Challenge 3) The motion of the patients is too arbitrary to 
be accurately modeled and poor and intermittent RSSI 
measurements make it very challenging to maintain the states 
of the motion model to improve location estimates.  

In the next paragraphs we describe how we address each 
one of the challenges introduced above. 

Challenge 1: we sample the possible locations of a patient 
to form the state space, and recursively update the probability 
of the patient being at these locations using the Bayesian 
paradigm. Let 1 2[ , ,..., ]

kk k k kNx x x=x be kN sampled locations 

of a patient at time k . Given new RFID measurements 

1 2[ , ,..., ]
Dk k k kNz z z=z , which represent the received signal 

strength of the radio beacons received at DN  DM-tracks at 

time k , we recursively calculate the probability of a patient at 
location kix  at time k given all previous 1: 1k −z  and current 

RFID measurements kz  by  
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where ( )1: 1|k kp −z z  is a normalizing factor , ( )|k kip xz  is 

the measurement probability of getting measurement kz  

assuming that the patient is sending radio beacons from kix . 

The measurement probability can be determined by a free 
space RF signal attenuation model.  

Challenge 2: the measurement probability can also be 
calculated using the scene and location specific radio 
propagation parameters, accounting for signal attenuation due 

to signal obstruction by buildings, etc. ( )1: 1|ki kp x −z  is the 

prediction probability that the patient is at location kix  given 

all previous RFID measurements 1: 1k −z , as 
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where ( )( 1)|ki k jp x x −  is the probability a patient moves 

from the thj sampled location at time  1k − to the thi at time 

k .  
Challenge 3: the motion model of a patient can be 

determined by a behavior model of patients accounting for 
crowd movement. For simplicity, we only consider the case 
where patients’ movements are independent of each other.  

The motion model has two modes. Normally, we only 
dilate the previous patient location distribution in all 
directions to model arbitrary patient movement, which can be 

done by convoluting the distribution with a Gaussian kernel if 
location sampling is uniform. The span and variance of the 
Gaussian kernel is determined by the movement probability 
and average movement speed of the patients, which can be 
customized for different triage levels. We use this simple 
movement model since it is difficult to accurately estimate 
patient movement direction and speed at a particular moment, 
given none or limited number of noisy measurements. This 
movement model is mainly used to reflect the increased 
uncertainty of patient location distribution over time in case 
no new measurements are available. 

We also use a second mode for the actual movement of 
patients. There may be an extended period of time when the 
patient move a significant distance to a new location, yet there 
were no paramedics near a patient to collect new 
measurement, and update the patient location distribution 
accordingly. As the dilating parameter for the normal case is 
chosen conservatively to account for those static patients, the 
patient location distribution will not dilate fast enough, and 
the patient’s new location will have a significantly lower 

prediction probability ( )1: 1|ki kp x −z  than his previous 

location in the next Bayesian update. Thus it will take a very 
long time before the algorithm can converge to the patient’s 
new location. To detect such movements, we calculate the 
ratio between the measurement probability at current point 
location estimate and the highest measurement probability of 
all locations. 
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where x  is a point estimate of patient location, which can be 
the average or mode of the patient location distribution

( )( )1: 11 | −− kk ip x z in the previous step. When R drops below a 

threshold RT  it indicates that the previous location 

distribution may be out-dated. We add a uniform component 
to the distribution and renormalize it.  

( )( ) ( )( )1: 1 1: 11 1| |− −− −= +k kk i k ip x p x Cz z     (4) 

Note that occasional outlier measurements can also cause a 
drop in R . Lower threshold RT and higher C enable the 

algorithm to converge faster in case of unobserved patient 
movement, while reducing the effective number of 
measurements that can be used to improve localization 
accuracy for static patients. 

We can use the variance of the patient location distribution 
as a factor to evaluate the accuracy and timeliness of the 
location estimate. If there were no paramedics nearby a 
patient to collect up-to-date RFID beacons, we would not be 
able to tell if the patient have moved to a new location or not. 
The motion model of the patient dilates the patient location 
distribution, increasing its variance. The patient location 
distribution variance decreases after paramedics move close 
to the patient, and new measurements are taken. Due to 
log-distance attenuation of the RF signal, the closer a 
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paramedic is located to a patient, the more concentrated the 
measurement probability. Thus multiple diverse 
measurements taken close to a patient enable us to locate the 
patient within a small area, with low variance of the patient 
location distribution. 

For an update at time k , the complexity of the algorithm is
( )k tO N N , where kN is the number of locations we sampled, 

and tN  is the number of targets. We can choose to only 

sample locations nearby a patient, to limit the number of 
states kN , and make it independent of the size of the incident 

area. kN can be limited to hundreds with 10 feet sampling 

granularity. Since the number of states is low, simple uniform 
sampling can be used, without resorting to more complex 
importance sampling and particle filtering. The constant 
factor in the O() expression depends on specific model we 
choose to model measurement likelihood, target motion, 
resample the state space, and specific implementations. A 
discrete sampling method significantly reduces the 
complexity of these steps as opposed to a parametric method. 
Our algorithm scales very well to large number of targets and 
large incident sites. The algorithm can run in real-time for a 
scenario with hundreds of targets on a typical PC with an 
update interval of one second or larger. 

IV. EXPERIMENT 

We carried out field experiments and simulations to 
evaluate the static and dynamic performance of the recursive 
tracking algorithm. In the static evaluation, we assume that 
patients stay still after the beginning of the test, and the 
patient location distribution is initialized to uniform 
distribution. In the dynamic evaluation, the patient will be 
moving and then stop in continuous cycles. The system needs 
to detect the movement of the patients, and apply 
corresponding movement models such that the location 
estimate can converge to the new location of the patient as 
soon as possible.  
Field experiment: The field experiment was carried out in a 

100ftX100ft area, with 20 patients who have been triaged 
with D-tags. Six patients have moved to a new location after 
they were initially triaged. In this experiment, the paramedic 
will first evacuate 14 static patients to the staging area located 
at the at the origin (0,0). After the 14 static patients are 
evacuated, we will evaluate how accurate are the location 
estimates for the 6 patients that moved. In Figure 1, we 
plotted the location of the static patients, and the actual and 
estimated location of the patients that moved.  All 6 patients 
are localized within 20 feet of their actual location. Note that 
localization accuracy of patients can be even better than 
localization accuracy of GPS in some cases, as GPS 
localization error averages out when we use multiple RFID 
measurements taken at different paramedic locations. 

Simulation: We use simulations to further evaluate the 
localization accuracy of the recursive tracking algorithm 
under various movement patterns of the paramedics. Note 
that our patient tracking algorithm tracks each patient 

independently. Thus, in the following simulation, we only use 
one patient to evaluate the localization accuracy, which also 
makes it easier to define paramedic’s movement patterns. 

  
Simulation 1: static patient.  
We use this simulation to evaluate the location accuracy of 

the static patient under different paramedics’ movement 
patterns. The paramedics’ movements are in straight lines of 
fixed length of 50 feet around a patient. The angles of the 
movement lines are random. The measurements taken from 
these lines are used to locate the patients.  The GPS offset and 
RFID measurements used in the simulation are synthesized 
from field measurements. To obtain these field measurements, 
we place on the patient located at the origin a triage tag. Then, 
a tester wearing the mobile DM-device walks in a grid pattern 
around this patient. In this way, we can collect the GPS 
location estimate offset at different locations around the 
patient, and the measured RFID signal strength at these 
locations. In the simulation, we synthesize different line 
movement patterns, and use GPS location estimate and RFID 
signal strength from the field measurements. This hybrid 
approach can help us capture the temporal and spatial 
correlation of GPS localization error and RFID noise. We 
assume that the beacons are sent at 2 seconds intervals. In 
Figure 2, we plot the average localization accuracy in terms of 
the shortest distance from the lines to the patient, and the 
number of lines where RF measurements are taken.  

We observe that the localization accuracy improves as the 
number of lines (either obtained by a single paramedic in 
multiple passes or by multiple paramedics) increases and as 
the distance between the paramedic path and the patient 
decreases.  

The algorithm obtains an accuracy of less than 20 feet in a 
number of cases: if we have a few readings, we need to obtain 
the readings close to the patient (less than 15 feet away). If we 
have 4 or more lines of readings the paramedic(s) can be as 
far as 50 feet away from the patient at all times. 

 
Figure 1. Location estimates of patients that moved  
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Figure 2. Localization accuracy as a function of average 

distance between paramedic paths and the patient  

 
Figure 3: Box plot of localization accuracy 

 
 Simulation 2: moving patients. 
We use the following simulation to evaluate the dynamic 

performance of the algorithm and its convergence speed. A 
patient in a 100ftX100ft area moves in the first 30 seconds of 
a cycle, and then stops for 90 seconds. There are two 
paramedics in the area moving randomly. Their DM-tracks 
collect RFID readings from the patients’ D-tags used to 
estimate the location of the patient. The simulation runs for 
100 cycles continuously. In this simulation, we assume that 
the GPS location estimate is uniformly distributed in a 40 by 
40 feet box centered on the actual paramedic location. For 
simplicity, we model the temporal and spatial correlation of 
GPS localization error and RFID noise. To reflect the 
correlation in the simulation, we under-sample RFID 
measurements from 2 seconds interval to 6 seconds interval. 
Figure 3 shows the box plot of the localization errors for the 
10 seconds interval of a cycle. As the patient starts moving, 

the system will experience delays in updating his new 
location due the availability of paramedics nearby, and 
localization errors peaks in the 20-30 second interval. Then, 
as the patient stops moving, more measurements are collected, 
and the system refines patient location estimation gradually. 
Within 30 seconds after the patient stopped moving, the 75 
percentile localization error drops below 20 feet. As time 
passes, the localization accuracy improves, and the number of 
location estimates with errors above 30 feet drops constantly. 
These large errors are primarily due to the lack of enough 
measurements taken close to the patient.  

In summary, the experiment and simulation results 
demonstrate that in some scenarios mobile readers can 
replace densely deployed fixed readers with equivalent 
performance. Moreover, the localization accuracy depends on 
the availability and closeness of paramedics to nearby 
patients.  
 

V. CONCLUSION 

In this paper we introduce a patient localization system using 
a mobile infrastructure (i.e., the DM-tracks) carried by the 
paramedics.  The proposed system takes advantage of the fact 
that the paramedics at a disaster site move close to the patients 
that need to be triaged and evacuated. This proximity will 
result in relatively high localization accuracy (comparable to 
GPS localization) given the fact that there is no fixed 
infrastructure. No fixed infrastructure requirement translates 
in reduced cost as well as significantly less deployment time. 
This technology is the first of its kind to enable outdoor 
localization of patients tagged with only an active RFID tag 
and requires no fixed infrastructure.  
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