
  

  

Abstract – Several risk score models are available in literature 

to predict death/myocardial infarction event for coronary 

artery disease (CAD) patients, within a short period of time. 

However, the choice of the most adequate model is not 

straightforward since there might not be a consensus about the 

best model to use in clinical practice Moreover, individually, 

these models present some weaknesses, such as the inability to 

deal with missing information. 

This work addresses these problems, proposing a Bayesian 

classifier strategy enabling the simultaneous use of several 

models (models’ fusion). Thus, a higher number of risk factors 

can be used in the common model, while it can deal with missing 

information. The validation of the strategy is carried out 

through the combination of three current risk score models 

(GRACE, TIMI, PURSUIT). Results were obtained based on a 

dataset that comprises 460 consecutive patients admitted to the 

Cardiology Department of Santa Cruz Hospital, Lisbon, from 

1999 to 2001. A comparison with the voting scheme, which 

considers exclusively the outputs of models to combine (models 

output combination) is also carried out. The proposed Bayesian 

approach had very satisfactory results, confirming the potential 

of its application to the clinical practice. 

  

I. INTRODUCTION 

Each year, cardiovascular disease (CVD) causes over 4.3 

million deaths in Europe and almost 2.0 million in the 

European Union.  In fact, CVD is the main cause of illness 

and death in Europe being responsible for 23% of the total 

disease burden [1]. Moreover, CVD alone represents 

approximately €192 billion /year to health costs in the 

European Union. Coronary Artery Disease (CAD), the cause 

of approximately half of all CVD deaths, is the single most 

common cause of death in Europe, and results in direct 

health costs of €23 billion [2]. 
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Therefore, the correct diagnosis and prognostication of 

cardiovascular disease is a key factor in trying to reduce 

these social and economic costs.  

In this context, risk assessment is an important component of 

preventive health care. Clinical professionals can evaluate 

the probability of occurrence of an event, based on past and 

current exposure to risk factors of the patient [3][4]. 

Therefore, it will help clinical professionals to identify and 

adapt treatment to individual patients.  

To this aim several risk score models are available in 

literature. These risk scores differ on  input risk factors, 

disease (coronary artery disease, heart failure,...), events 

prediction (death, myocardial infarction, unstable angina, 

hospitalization), the time over which the risk is calculated 

(days/months/years) prevention type (primary/secondary) 

and patients’ specific condition (for example diabetics).  

Of particular relevance are the statistical risk scores GRACE, 

TIMI (no ST-elevation), TIMI (ST-elevation) and PURSUIT 

[5][6][7][8]. These models are employed for secondary 

prevention on CAD patients, in particular for assessing the 

risk of death/myocardial infarction within a short period of 

time (days/months). Usually, one of these statistical models 

is commonly in use as the standard model in different 

institutions. However, the choice of the best adequate model 

can be difficult since there might not be a consensus about 

the best model to use. Therefore, combining existing models 

(current knowledge) is potentially interesting.  

This work intends to compare two different approaches to 

combine different risk assessment models: a) Model´s fusion 

based on Bayesian classifiers, b) Individual Models Output 

Combination. Models’ fusion is implemented based on an 

approach developed by the authors and detailed in [9]. In a 

first phase a common representation based on a Naïve-Bayes 

classifier is applied to each individual risk score model. Then 

a proper combination of the individual model’s parameters is 

implemented, enabling the integration of the information 

provided by the individual models. On the other hand, 

individual models output combination is implemented 

through a well known voting scheme.  

The paper is organized as follows: in section II an outline of 

the methodology of the two combination schemes is 

presented. In section III the results of the two methods are 

compared and discussed. Section IV includes the conclusions 

and the main research paths to be followed in the near future.  
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II. METHODOLOGY 

Combination of classifiers can be done based on different 

techniques that can be organized in two main categories: a) 

Models’ fusion; b) Individual models output combination.  

A. Models’ Fusion – Bayesian Approach 

To implement this strategy, two main phases were required: 

1) common representation of all individual models; 2) a 

combination scheme that exploits the probabilistic nature of 

Naïve-Bayes inference mechanism.  

1) Common Representation of Individual Models 

Current individual risk score models are described by 

different equations/scores/charts [5][6][7][8]. So, in order to 

ease their combination, all the individual risk score models 

were represented as Naïve-Bayes classifiers. This classifier 

was selected since it is efficient, simple and can deal with 

lack of input information (missing risk factors) [10]. Its 

inference mechanism is given by: 
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Usually 1{ ,..., }kX X=x  is a set of observations (clinical 

examination, laboratory measurements,…) and C a 

hypothesis (e.g. risk level is “High”). The term ( | )P C x  is 

the probability that the hypothesis is correct after 

observations have occurred (e.g., the probability that risk is 

“High” given the results of a clinical examination, 

measurements,…). ( )P C
 

is the probability that the 

hypothesis is correct before seeing any observation (in this 

example, the prevalence of the risk level). ( | )P X C is a 

likelihood expressing the probability of the observation X 

being made if the hypothesis is correct (equivalent to the 

sensitivity of the clinical examination). α is a normalization 

constant. This particular Bayesian inference mechanism 

(Naïve Bayes) assumes that observation 

instances 1{ ,..., }kX X=x , are conditionally independent, 

given the value of hypothesis C [11][12]. However, even if 

this condition is not verified, naïve Bayes often presents a 

good performance [13]. 

Conditional probability tables (CPT) of each individual 

model were derived based on equations/scores available in 

literature. The training dataset must contain all the risk 

factors that belong to the different individual models. As a 

result, conditional probability tables for the n observations 

were constructed based on (2).  
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(2) 

It is assumed that class C has several categories (mutually 

exclusive), and that variable kc  denotes the k class label of 

variable C. Furthermore, it is assumed that variable 
j

x  

denotes a particular value of the attribute iX  and m is the 

total number of training instances.  

2) Combination Strategy 

In this phase the individual models (M1,…,MM) are 

combined to generate a  global model (MC).  

Based on a training set, each classifier is characterized by a 

specific CPT, ( | )j
i iP X C , and by its respective prior 

probabilities of output classes, ( )iP C , regarding a specific 

number of mutually exclusive classes. Where i denotes the 

individual model and j identifies the risk factor. 

The global model is formed at each time by the union of the 

selected active individual models, i.e., models that verify the 

selection criteria. Moreover, some risk factors (model inputs) 

may be considered by more than one model, while other 

inputs belong only to a particular model. In order to perform 

this combination some conditions have to be verified: i) 

Individual models have the same number of output levels 

(e.g. low, high); this ensures that individual models share the 

same risk assessment goal. ii) Among individual models, 

shared variables’ CPT ( | )j
i iP X C  present approximately the 

same values. Parameters of global model P(C) and 

( | )iP X C were determined based on a frequency calculation 

considering the individual models as presented in (2).   

This methodology also makes the incorporation of clinical 

expertise a straightforward operation. In fact, a new model 

can be directly created by the physician based on a CPT 

definition, and easily incorporated in the combination 

scheme. This is an important characteristic of this method.   

3)  Optimization 

If there is an available dataset characterizing a specific 

population, an additional optimization step can be performed 

to improve the performance of the global model. Conditional 

probability tables ( | )iP X C of the global model can be 

optimized by means of an optimization strategy, such as 

genetic algorithms. A more detailed description of this 

methodology can be found in [9].  

B. Individual Models Output Combination 

This type of combination includes several methods that can 

be organized in two main groups: static and dynamic.  Static 

methods apply the same method for the entire data space. 

Examples of such methods are cross validation majority, 

voting and weighted voting [14][15]. The dynamic 

combination considers the characteristics of each specific 

instance to be classified, in order to define the most proper 

classifiers to combine/select. Examples are dynamic 

selection, dynamic voting and dynamic voting with selection 

[14].   

The voting method (static) is explored in this work. In 

voting, the classification produced by a classifier is 

considered as a vote for a particular class value. The class 

with the highest number of votes is selected as the final 

classification [14]. This technique has a serious drawback 

since it has no mechanism to solve the draw situations. In 

this work it does not happen, since there are two output 

classes and an odd number of models (and therefore votes) to 

combine.  
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III. RESULTS 

A. Santa Cruz Hospital Dataset (Testing Dataset) 

This dataset contains data from N=460 consecutive patients 

that were admitted in  the Santa Cruz Hospital, Lisbon,  with 

Acute Coronary Syndrome with non-ST segment elevation 

(ACS-NSTEMI) between March 1999 and July 2001. Table 

I presents the main clinical characteristics of such patients (a 

detailed analysis can be found in Gonçalves et. al. [16]). 

Continuous variables with a normal distribution are 

expressed as mean value and standard deviation. Discrete 

variables are presented as frequencies and per cent values. 

This dataset was used as the testing dataset to validate the 

two combination strategies. 

TABLE I 

CLINICAL CHARACTERISTICS OF PATIENTS THAT INTEGRATE THE DATASET 

Model Event 

age (years) 63.4 ± 10.8 

sex (Male/Female) 361 (78.5%) / 99 (21.5%) 

Risk Factors: 

 Diabetes (0/1) 

 Hypercholesterolemia (0/1) 

 Hypertension (0/1) 

 Smoking (0/1) 

 

352 (76.5%) / 108 (23.5%) 

180 (39.1%) / 280 (60.9%) 

176 (38.3%) / 284 (61.7%) 

362 (78.7 %) / 98 (21.3%) 

Previous History / Known CAD 

 Myocardial Infarction (0/1) 

 Myocardial Revascularization (0/1) 

 PTCA 

 CABG 

 

249 (54.0%) / 211 (46.0%) 

239 (51.9%) / 221 (48.1%) 

146 (31.7%) 

103 (22.4%) 

sbp (mmHg) 142.4 ± 26.9 

hr (bpm) 75.3 ± 18.1 

Creatinine (mg/dl) 1.37 ± 1.26 

Enrolment [0 UA, 1 MI] 180 (39.1 %) / 280 (60.9%) 

Killip  1/2/3/4 395 (85.9%) / 31 (6.8%) /  

33 (7.3 %) / 0% 

CCS [0  I/II; 1 CSS III/IV] 110 (24.0%) / 350 (76.0%) 

ST Segment Deviation (0/1) 216 (47.0%) / 244 (53.0%) 

Signs of Heart Failure(0/1) 395 (85.9%) / 65 (14.1%) 

Tn I > 0.1 ng/ml (0/1) 313 (68.0%) / 147 (32.0%) 

Cardiac Arrest Admission (0/1) 460 (100%) / 0% 

Aspirin (0/1) 184 (40.0%) / 276 (60.0%) 

Angina (0/1) 19 (4.0%) / 441 (96.0%) 

 

Table II presents the occurrence of the D-death and MI-

myocardial infarction events during two time periods: one 

month and one year.  

TABLE II 

ENDPOINTS OF SANTA CRUZ HOSPITAL DATASET 

Time Event n % Total  

D 13 2.8 30 

days MI 24 5.2 

33 

7.2% 

D 32 7.0 1 

year MI 49 10.7 

70 

15.4 

D: Death; MI: Myocardial Infarction 

B. Training Data Set 

With respect to the training process the approach proposed 

by Twardy et. al. [11] was followed here. Continuous 

variables (age, sbp, hr and cr) were normally distributed. 

Values for mean and standard deviation were taken from the 

literature [16]. Discrete variables are binary and were 

generated through a random process. The training data set 

was created 
1( ,..., )i nix x  for all Ni ≤≤1 : training set 

N=1000. This training dataset was applied to the models 

described in the following item, to obtain the respective 

output class 
1( ,..., , )i ni ix x c  for all Ni ≤≤1 .  

C. Individual Models Description 

Table III presents the selected individual risk score models 

to predict death/MI for CAD patients within a short period. 

TABLE III 

SHORT-TERM RISK ASSESSMENT MODELS 

Model Event Time 
Prev. 
Type 

Risk Factors 

GRACE 

[7] 
D 

MI 
6 m S 

Age, SBP, CAA HR, 

Cr, STD, ECM, CHF 

PURSUIT 

[8] 
D 

MI 
30 d S 

Age, Sex, SBP, CCS, 

HR, STD, ERL, HF 

TIMI 

[9] 

D 

MI 

UR 

14 d S 
Age, STD, ECM, 

KCAD, AS, AG, RF 

D: Death; MI: Myocardial Infarction; UR: Urgent revascularization 

m: months; d: days; S: Secondary Prevention; 

Cr-Creatinine,  HR – Heart Rate,  CAA – Cardiac Arrest at Admission, 

CHF – Congestive Heart Failure, STD - ST Segment. Depression, ECE - 

Elevated Cardiac Markers/Enzymes,  KCAD- Known CAD,  ERL – 

Enrolment(MI/UA), HF –Heart Failure, CCS – Angina classification, AS - 

Use of aspirin in the previous 7 days, AG - 2 or more angina events in past 

24 hrs, RF - 3 or more cardiac risk factors 

D. Individual models Performance 

As mentioned in II a), the proposed combination scheme 

requires that individual models have the same number of 

output levels. This work defines the risk stratification in two 

categories: {“low/intermediate risk” ,  “high risk” }. 

Therefore, the “high risk” category in the original models 

matches the new “high risk”. The remaining original 

categories were grouped in “low/intermediate risk” category. 

Table IV shows the performance of the three individual 

models when the testing dataset (real patient data described 

in III a) is considered for a time period of 30 days. As 

observed the three models present a very different ability to 

predict the combined endpoint (Death/Myocardial 

Infarction). 

TABLE IV 

PERFORMANCE OF SELECTED INDIVIDUAL MODELS 

Model SE SP ACC AUC  
TIMI 33.3 73.5 70.7 0.534  

GRACE 60.6 74.9 73.9 0.678  
PURSUIT 42.4 74.2 71.9 0.583  

  SE: Sensitivity(%); SP: Specificity(%); ACC: Accuracy(%);  

 AUC: area under the Receiver Operating Characteristic 

 

E. Models’ Combination  

Training data set was used to calculate the parameters of 

Bayesian individual models (common representation). Then, 

these models were combined to generate the Bayesian global 

model according to the methodology explained in II a).  

The global voting model was implemented considering the 

outputs (0/1) of the three individual models.  

Table V shows the performance of both models (fusion and 

voting). 
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TABLE V 

COMBINATION OF THE THREE INDIVIDUAL CLASSIFIERS 

Model SE SP ACC AUC 
Global Model Bayesian  60.6 70.7 66.5 0.651 
Global Model Voting 48.5 75.6 73.7 0.594 

 

It is possible to confirm that the Bayesian approach (models’ 

fusion) presents a better sensitivity and discrimination 

capability than the global model obtained through voting. In 

contrast, its specificity and accuracy are lower than the 

voting model. However, the Bayesian approach presents 

additional advantages, since its inference mechanism is able 

to cope with missing information, as detailed in [10]. It also 

allows the direct incorporation of clinical expertise through 

CPT definition by the physician.    

F. Conditional Probability Table Optimization 

Additionally, contrarily to the voting scheme, the proposed 

fusion methodology can be adjusted to a specific population. 

In this case, if a dataset is available, an optimization can be 

performed improving the behaviour of the Global Bayesian 

model. Table VI presents such optimization results, by 

means of a genetic algorithm approach. 

TABLE VI 

BAYESIAN MODEL ADJUSTMENT TO THE DATASET 

Model SE SP ACC AUC  
Global Bayesian BO 60.6 70.7 66.5 0.651 
Global Bayesian AO 60.6 76.1 75 0.682 

  BO: Before Optimization; AO: After Optimization   

It is possible to conclude that genetic algorithms’ 

optimization improved the performance of Bayesian global 

model. This multiobjective optimization attempted to 

maximize simultaneously the specificity and the sensitivity 

of the global model. The objective functions to minimize 

were: 

1 21 ; 1
TP TN

f f
TP FN TN FP

= − = −
+ +

 

TP: True Positive; TN: True negative; FN: False negative; FP:  False Positive 

(3) 

restricted to: 

( | ) ( | )p X C p X Cβ δ β− ≤ ≤  (4) 

The value of 0.7β = was defined after several experiments. 

Although this restriction reduces the efficiency of the 

optimization algorithm, it assures that optimization 

procedure does not ignore the knowledge provided by the 

original models [9].  

IV. CONCLUSIONS 

This work addressed the combination of risk assessment 

models for CAD patients. As referred, combination of risk 

assessment models can avoid the difficulty of choosing a 

standard model as well as increase the number of considered 

risk factors. Two different approaches were evaluated: a) 

model’s fusion based on Bayesian classifiers, b) combination 

of individual models outputs.  

Bayesian approach presented a very interesting performance 

when compared with the voting scheme. The inference 

mechanism of Bayesian methodology makes it possible to 

cope with missing information and inherently allows the 

direct incorporation of other relevant models created from 

clinical expertise (CPT definition by the physician). 

Additionally, it can be adjusted for a given population. 

Preliminary results are very promising, suggesting the 

potential of the Bayesian approach to combine current 

models in a clinical practice context. Future work will 

analyze the capability of the strategy to deal with missing 

information as well as the incorporation of additional clinical 

knowledge. Moreover, assuming that some score models are 

more generally accepted than others, the Bayesian approach 

should cope with the relative importance of such models.  
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