
  
Abstract—The challenge of comparing two or more genomes 

that have undergone recombination and substantial amounts of 

segmental loss and gain has recently been addressed for small 

numbers of genomes. However, datasets of hundreds of genomes 

are now common and their sizes will only increase in the future. 

Multiple sequence alignment of hundreds of genomes remains 

an intractable problem due to quadratic increases in compute 

time and memory footprint. To date, most alignment algorithms 

are designed for commodity clusters without parallelism. 

Hence, we propose the design of a multiple sequence alignment 

algorithm on massively parallel, distributed memory 

supercomputers to enable research into comparative genomics 

on large data sets. Following the methodology of the sequential 

progressiveMauve algorithm, we design data structures 

including sequences and sorted k-mer lists on the IBM Blue 

Gene/P supercomputer (BG/P). Preliminary results show that 

we can reduce the memory footprint so that we can potentially 

align over 250 bacterial genomes on a single BG/P compute 

node. We verify our results on a dataset of E.coli, Shigella and 

S.pneumoniae genomes. Our implementation returns results 

matching those of the original algorithm but in 1/2 the time and 

with 1/4 the memory footprint for scaffold building. In this 

study, we have laid the basis for multiple sequence alignment of 

large-scale datasets on a massively parallel, distributed memory 

supercomputer, thus enabling comparison of hundreds instead 

of a few genome sequences within reasonable time. 

I. INTRODUCTION 

OMPARATIVE genomics relies heavily on the alignment 

of multiple genomes. With recent advances in 

microbial diagnostics, typing and surveillance, comparative 
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genomics is playing an increasingly important role in 

epidemiology, pathogen evolution and the fight against drug 

resistance. One way to characterize fine-scale genomic 

variation and confidently infer drug resistance mutations is 

through aligning and comparing many genomes. Therefore, 

there is a pressing need for computationally efficient 

algorithms and tools which are able to scale with current and 

future genomic datasets.  

There are many methods of sequence alignment, common 

algorithms include: ClustalW2 [2]; MUSCLE [3]; T-Coffee [4] 

and progressiveMauve [5]. The latter is a sequence aligner 

used predominantly for bacteria. It can be used to find genome 

re-arrangements and aligns to a scaffold of conserved regions. 

Alignment makes use of a tree method similar to ClustalW2 

and MUSCLE. The progressiveMauve algorithm is ideal for 

analyzing population diversity as genome rearrangements are 

taken into account during alignment. However, the current 

implementation is both computation and memory intensive.  

It is common for alignment methods to trade between speed 

and accuracy. Exponential amounts of random access memory 

(RAM) with respect to input data size are often a key 

requirement. When aligning large genomic populations, RAM 

can become a problem. While virtual memory can be used, it 

often results in a slowdown of computation. Thus, considering 

that genomic data will only increase in size and volume in the 

future, the problem of multiple sequence alignment will need 

high performance computing (HPC) systems.  

To our knowledge, there is no scalable alignment method 

available that accurately measures genetic diversity. Further, 

most alignment algorithms are designed for shared memory 

computers. These will require terabytes of RAM to carry out 

multiple sequence alignment of hundreds of genomes. 

Designing an algorithm for massively parallel, distributed 

memory machines such as the IBM Blue Gene/P 

supercomputer (BG/P) will create opportunities for fast, high 

throughput multiple sequence alignment in the future.  

In this study we present our design and concept as well as 

preliminary results of a multiple sequence alignment 

algorithm for massively parallel, distributed memory HPC 

systems. 

II. MATERIALS AND METHODS 

We choose to parallelize the progressiveMauve algorithm due 

to its advantages regarding analyzing population diversity. In 

addition, comparing our results with the original output serves 

to validate our method. First, we analyze progressiveMauve 

with respect to regions that have to be carried out sequentially 
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Fig. 1: Flowchart detailing the operation of the progressiveMauve algorithm. 

and that can be carried out in parallel. Then, we carry out a 

performance analysis to investigate computation intensive 

regions in the algorithm. Finally, we present preliminary 

results for setup and scaffold formation of a distributed, low 

memory consuming version of the progressiveMauve 

algorithm designed for the IBM BlueGene/P supercomputer. 

A. Overview of progressiveMauve 

progressiveMauve was developed at the University of 

Wisconsin. This algorithm aligns conserved regions of a 

genome allowing for accurate alignments between closely 

related genomes and understanding of rearrangement history. 

Operation of the progressiveMauve algorithm (Fig 1.) is as 

follows: 

progressiveMauve begins by loading sequence data, stored 

in FASTA format, into memory. The average sequence length 

is used to find the optimal k-mer length. progressiveMauve 

makes use of this k-mer size to create a spaced seed mask. 

Spaced seed masks are patterns which indicate locations 

where genetic mutations are allowed. Spaced seeds are used to 

locate k-mers which are not continuous, this is necessary when 

looking for genome re-arrangements [6]. A family of spaced 

seeds can be used to improve the accuracy of the k-mer list. A 

k-mer list is then sorted so that matching sequences are next to 

each other. 

Once the sorted k-mer list has been generated, a reference 

genome called a scaffold is created. Scaffolds are built from 

k-mers that exist in two or more sequences. These k-mers are 

then called seeds. Each seed is extended in both directions 

until no further seeds are found. 

Alignment utilizes a MUSCLE derived algorithm where 

distance values are generated for each k-mer. Un-aligned 

sequences with similar distance values are anchored to the 

previously derived scaffold. To speed up alignment, 

sum-of-pair greedy breakpoint elimination values are used to 

find related anchors. 

Finally, a Hidden Markov Model is used to remove bias in 

areas containing differential gene content. The model makes 

predictions of pairwise homology. Regions found to be 

unrelated are removed from the final alignment. 

B. Design Considerations 

When parallelizing the progressiveMauve algorithm, 

hardware considerations must be taken into account. We 

choose to design the algorithm for the IBM BlueGene/P 

supercomputer (BG/P) [7] because it is a massively parallel, 

distributed memory system. BG/P consists of 1,024 compute 

nodes in a single rack connected through a high speed 

communication network. Multiple racks of BG/P can be 

connected together to form a larger computer. We carry out 

our simulations on the Victorian Life Sciences Computation 

Initiative (VLSCI) that comprises two racks of BG/P with 

2,048 compute nodes, i.e. 8,192 cores. For our development 

we only used a partition of 64 compute nodes (256 cores), the 

smallest partition on BG/P at VLSCI. Each compute node has 

four 850 MHz PowerPC cores connected to a local memory 

unit of 4GB. BG/P can be configured to run in one of three 

modes. SMP mode has one process per node, up to four 

threads per process and 4GB RAM per process. Dual mode 
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gives two processes per node, up to two threads per process 

and 2GB RAM per process. Virtual Node (VN) mode uses four 

separate single-thread processes with 1GB RAM each. 

Persistent storage is accessible through a few dedicated I/O 

nodes. As there is no internal storage, virtual memory is not 

available. Due to these hardware limitations it is necessary to 

devise methods that store data efficiently and limit the number 

of I/O operations. 

 Our algorithm currently runs in VN mode that maximizes 

compute power but limits the size of each FASTA file to 450 

million base-pairs. It is possible to increase the available 

RAM by using SMP mode; however adoption of hybrid 

programming models that increase design complexity will be 

required to obtain computational efficiency. 

C. Basic Design 

When distributing the progressiveMauve algorithm onto a 

parallel, distributed memory computer we adopt a 

master-worker approach for parallelization. Its advantage is 

that it allows for more control over memory and 

computational allocation compared to other strategies. As this 

implementation is to be optimized for the BG/P, the 

master-worker approach was chosen. Further, its 

implementation is straight forward which is desirable for a 

first design. 

In a master-worker approach, a single master node 

distributes data and jobs to free worker nodes. The framework 

used in the distributed progressiveMauve algorithm (Fig. 2) is 

based around sending commands that are interpreted by a 

worker node. This communication framework also supports 

message sending between worker nodes, which is used to 

transfer sequence data. In this case, the master node sends two 

messages: one for a worker to listen to a specified rank and 

one for the other worker to send to the listening node.  

D. Implementation 

The distributed progressiveMauve algorithm starts by 

loading sequence data into RAM. Due to memory limitations, 

each FASTA file is loaded onto an individual compute node 

corresponding to a single MPI task. Once created, these nodes 

have the ability to send specified portions of a sequence to 

other MPI tasks. 

The generation of the sorted k-mer list is parallelized as 

follows. Each sequence is broken up into smaller fragments 

that are distributed to free worker nodes. To ensure accuracy 

of returned k-mers it is important for each sequence fragment 

to include the maximum k-mer length. After receiving data, 

each node constructs a seed mask, used to find and separate 

k-mers. K-mer lists are sorted and serialized before being sent 

to the master node. While the merging of the lists can be 

carried out in parallel as well, we chose to have the master 

node do the merging of the k-mer lists, keeping the basic 

implementation as simple as possible while running on a 

parallel, distributed supercomputer. Memory overhead of the 

sorted k-mer list has been reduced by dynamic condensing of 

like mers. Links are then made between the unique mers, 

sequence positions and FASTA files. This methodology 

removes repetitive data that is an advantage when aligning 

similar sequences. The final sorted mer list consists of unique 

mers and the number of sequences they appear in.  

The current implementation has also been simplified in 

order to improve code readability and installation. The 

distributed algorithm consists of 7 files (reduced from 388 

files) and removed all non-standard dependencies (such as 

Boost and pkg-config). The modifications made to the 

software have also removed a number of redundant variables 

in order to trim memory usage. 

E. Data Sets and Benchmarking 

We first carry out performance testing of the 

progressiveMauve algorithm with respect to setup, scaffold 

building, alignment and HMM run times. We further profile 

the memory footprint used by the algorithm. We tested our 

current design using 31 complete E. Coli, Shigella and 

S.pneumoniae genomes. The E. coli and Shigella data was 

downloaded from http://www.biotorrents.net/ (accessed 

21/3/11) [5]. The S. pneumonia data was acquired from the 

NCBI Entrez website (http://www.ncbi.nlm.nih.gov/Entrez/ 

accessed 21/3/11) [8]. The number of genomes, sequences 

and bases per genome are provided in Table I. We carry out 

weak scaling simulations to test performance on BG/P using 

64 computational nodes (256 cores). We measure run times 

for building the scaffold using 2, 4, 6, 8, 16 and 23 genomes 

combining E.coli and Shigella sequences since they have 

similar number of bases per genome. To test performance for 

genomes with smaller number of base pairs per genome we 

use 2, 4, 6 and 8 genomes of S.pneumoniae seperately. 

III. PRELIMINARY RESULTS 

Investigation of memory usage revealed that generating the 

sorted mer list is the most memory intensive operation. Our 

improvements in data storage allow the distributed algorithm 

to theoretically align a maximum of 200 bacteria sequences on 

a 64 node BG/P partition which would not be possible with the 

original progressiveMauve implementation. Performance 

 
 

Fig. 2. Comunication framework utilized by the distribued 

progressiveMauve algorithm. 
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analysis of the progressiveMauve shows that the alignment 

step (Fig. 1) is the most compute intensive phase. On average 

the alignment consumed 90% of total run time.  

The results for building the scaffold on BG/P are shown in 

Table II. Our algorithm produces a scaffold comparing two 

E.coli genomes in less than 1.5 minutes resulting in a k-mer 

list with over 10 million entries. The scaffold for the total data 

set of 18 E. coli and five Shigella genomes took about 15 

minutes with a k-mer list of over 114 million entries. Thus, 

while increasing the data volume by about a factor of 11 we 

find that the time to build the scaffold also increases by a 

factor of 11. This also corresponds to the number of entries in 

the k-mer list that has 11.4 times more entries for 23 genomes 

compared with the analysis of two genomes. The analysis for 

the S.pneumoniae genomes confirms this result with respect to 

run time although the number of k-mers found is smaller. 

Overall, using the 23 E. coli and Shigella genomes, our 

implementation creates 23 FASTA nodes and 232 worker 

nodes. The creation of the sorted k-mer list took 16 minutes 

including setup, generating 3.7MB of compressed data per 

node. Comparing the run time between the original 

progressiveMauve algorithm and our implementation we 

achieve a speedup of 2.8. This is notable as the sequential 

version was run on a server with 1.6 GHz clock speed which is 

~2 times faster than a BG/P node. 

IV. DISCUSSION 

While parallelization will have the greatest impact in the 

alignment step, one has to sequentially parallelize the 

algorithms for a complete port to massively parallel, 

distributed memory systems.  Also, for massively parallel, 

distributed memory supercomputers with limited memory per 

node one has to optimize data storage first which we have 

achieved by implementing the setup and building the scaffold 

first that then allows to carry out the alignment to make full 

use of the computational resources of a supercomputer. Our 

method of distributing the sorted k-mer list can utilize large 

amounts of nodes to improve performance. Testing of the 

distributed aligner using E-coli, Shigella and S.pneumoniae 

genomes has confirmed the accuracy of this implementation; 

having returned back results an exact match to the original 

algorithm. While future focus has been put on aligning 

bacteria genomes our implementation using data compression 

means that it is possible to fit a human genome on each BG/P 

node running in SMP mode. Size of the sorted k-mer list 

depends on the amount of variation between sequences. 

Similar sequences will contain matching seeds which are 

condensed to positions. 

V. CONCLUSION AND FUTURE WORK  

Memory efficient data structures and the creation of the 

scaffold in a distributed manner is the first step in devising a 

scalable alignment algorithm. Further work is required to 

parallize the alignment and HMM phase of the 

progressiveMauve algorithm where we expect to have large 

impact on run time performance. Validation and verification 

as well as benchmark comparison of original and distributed 

progressiveMauve algorithms will then be carried out. 

Sequence alignment is a genomic comparison technique 

commonly utilized in modern genomics. While alignment is 

achievable on small sets of genomes, when applied to large 

datasets, it becomes memory and computationally intensive, 

even intractable on common computer clusters. The design of 

multiple sequence alignment algorithms for massively 

parallel, distributed memory systems enables comparison of 

hundreds of genomes in the same time as a few genome 

sequences. In this study we have laid down the basis for 

multiple sequence alignment on massively parallel, 

distributed memory supercomputers for large scale genomic 

sequence alignment, thus enabling comparison of hundreds 

instead of a few genome sequences within reasonable time. 
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TABLE I 

SUMMARY OF GENOMES USED FOR WHOLE GENOME COMPARISON 

Organism 

Number 

of 

genomes 

Number 

of 

sequences 

Base pairs 

per genome 

[Mbp] 

Total 

number of 

base pairs 

[Mbp] 

E.coli 18 18 5.07 91.3 

Shigella 5 5 4.58 22.9 

S.pneumoniae 8 8 2.13 17.1 

Mbp – Mega base pairs 

TABLE II 

RUN TIME AND NUMBER OF K-MERS IN SCAFFOLD 

Number 

of 

genomes 

E. coli/Shigella S.pneumoniae 

run time [s] k-mers run time [s] k-mers 

2 84.06 10,020,773 14.32 4,084,686 

4 158.48 19,921,809 34.65 8,539,454 

6 229.62 30,118,466 48.58 12,838,812 

8 313.78 40,307,489 62.52 17,070,882 

16 646.91 81,663,419 - - 

23 929.32 114,205,647 - - 
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