

Abstract—The challenge of comparing two or more genomes

that have undergone recombination and substantial amounts of

segmental loss and gain has recently been addressed for small

numbers of genomes. However, datasets of hundreds of genomes

are now common and their sizes will only increase in the future.

Multiple sequence alignment of hundreds of genomes remains

an intractable problem due to quadratic increases in compute

time and memory footprint. To date, most alignment algorithms

are designed for commodity clusters without parallelism.

Hence, we propose the design of a multiple sequence alignment

algorithm on massively parallel, distributed memory

supercomputers to enable research into comparative genomics

on large data sets. Following the methodology of the sequential

progressiveMauve algorithm, we design data structures

including sequences and sorted k-mer lists on the IBM Blue

Gene/P supercomputer (BG/P). Preliminary results show that

we can reduce the memory footprint so that we can potentially

align over 250 bacterial genomes on a single BG/P compute

node. We verify our results on a dataset of E.coli, Shigella and

S.pneumoniae genomes. Our implementation returns results

matching those of the original algorithm but in 1/2 the time and

with 1/4 the memory footprint for scaffold building. In this

study, we have laid the basis for multiple sequence alignment of

large-scale datasets on a massively parallel, distributed memory

supercomputer, thus enabling comparison of hundreds instead

of a few genome sequences within reasonable time.

I. INTRODUCTION

OMPARATIVE genomics relies heavily on the alignment

of multiple genomes. With recent advances in

microbial diagnostics, typing and surveillance, comparative

Manuscript received March 24, 2011. This research was supported by

Victorian Life Sciences Computation Initiative (VLSCI) grant numbers

VR0126 and VR0082 on its Peak Computing Facility at the University of

Melbourne, an initiative of the Victorian Government.

P. C. Church is with Deakin University, Science and Technology

(corresponding author; phone: +61 3 52271399, e-mail:

pcc@deakin.edu.au).

A. Goscinski is with Deakin University, Science and Technology

(e-mail: andrzej.goscinski@deakin.edu.au).

K. Holt is with the Dept. of Microbiology and Immunology at the

University of Melbourne, Carlton, VIC, Australia (e-mail:

kholt@unimelb.edu.au)

M. Inouye is with the Walter and Eliza Hall Institute of Medical

Research, Parkville, VIC, Australia and with the Dept. of Medical Biology at

the University of Melbourne, Parkville, VIC, Australia (e-mail:

inouye@wehi.edu.au)

A. Ghoting and K. Makarychev are with the IBM T. J. Watson Research

Center, Yorktown Heights, NY, USA (e-mail: {aghoting;

konstantin}@us.ibm.com).

M. Reumann is with the IBM Research Collaboratory for Life

Sciences-Melbourne, Carlton, VIC, Australia and the Dept. of Computer

Science and Software Engineering, University of Melbourne (e-mail:

mreumann@ieee.org).

genomics is playing an increasingly important role in

epidemiology, pathogen evolution and the fight against drug

resistance. One way to characterize fine-scale genomic

variation and confidently infer drug resistance mutations is

through aligning and comparing many genomes. Therefore,

there is a pressing need for computationally efficient

algorithms and tools which are able to scale with current and

future genomic datasets.

There are many methods of sequence alignment, common

algorithms include: ClustalW2 [2]; MUSCLE [3]; T-Coffee [4]

and progressiveMauve [5]. The latter is a sequence aligner

used predominantly for bacteria. It can be used to find genome

re-arrangements and aligns to a scaffold of conserved regions.

Alignment makes use of a tree method similar to ClustalW2

and MUSCLE. The progressiveMauve algorithm is ideal for

analyzing population diversity as genome rearrangements are

taken into account during alignment. However, the current

implementation is both computation and memory intensive.

It is common for alignment methods to trade between speed

and accuracy. Exponential amounts of random access memory

(RAM) with respect to input data size are often a key

requirement. When aligning large genomic populations, RAM

can become a problem. While virtual memory can be used, it

often results in a slowdown of computation. Thus, considering

that genomic data will only increase in size and volume in the

future, the problem of multiple sequence alignment will need

high performance computing (HPC) systems.

To our knowledge, there is no scalable alignment method

available that accurately measures genetic diversity. Further,

most alignment algorithms are designed for shared memory

computers. These will require terabytes of RAM to carry out

multiple sequence alignment of hundreds of genomes.

Designing an algorithm for massively parallel, distributed

memory machines such as the IBM Blue Gene/P

supercomputer (BG/P) will create opportunities for fast, high

throughput multiple sequence alignment in the future.

In this study we present our design and concept as well as

preliminary results of a multiple sequence alignment

algorithm for massively parallel, distributed memory HPC

systems.

II. MATERIALS AND METHODS

We choose to parallelize the progressiveMauve algorithm due

to its advantages regarding analyzing population diversity. In

addition, comparing our results with the original output serves

to validate our method. First, we analyze progressiveMauve

with respect to regions that have to be carried out sequentially

C

Philip C. Church, Student Member, IEEE, Andrzej Goscinski, Kathryn Holt, Michael Inouye, Amol

Ghoting, Konstantin Makarychev, and Matthias Reumann, Member, IEEE

Design of Multiple Sequence Alignment Algorithms on Parallel,

Distributed Memory Supercomputers

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 924

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

Fig. 1: Flowchart detailing the operation of the progressiveMauve algorithm.

and that can be carried out in parallel. Then, we carry out a

performance analysis to investigate computation intensive

regions in the algorithm. Finally, we present preliminary

results for setup and scaffold formation of a distributed, low

memory consuming version of the progressiveMauve

algorithm designed for the IBM BlueGene/P supercomputer.

A. Overview of progressiveMauve

progressiveMauve was developed at the University of

Wisconsin. This algorithm aligns conserved regions of a

genome allowing for accurate alignments between closely

related genomes and understanding of rearrangement history.

Operation of the progressiveMauve algorithm (Fig 1.) is as

follows:

progressiveMauve begins by loading sequence data, stored

in FASTA format, into memory. The average sequence length

is used to find the optimal k-mer length. progressiveMauve

makes use of this k-mer size to create a spaced seed mask.

Spaced seed masks are patterns which indicate locations

where genetic mutations are allowed. Spaced seeds are used to

locate k-mers which are not continuous, this is necessary when

looking for genome re-arrangements [6]. A family of spaced

seeds can be used to improve the accuracy of the k-mer list. A

k-mer list is then sorted so that matching sequences are next to

each other.

Once the sorted k-mer list has been generated, a reference

genome called a scaffold is created. Scaffolds are built from

k-mers that exist in two or more sequences. These k-mers are

then called seeds. Each seed is extended in both directions

until no further seeds are found.

Alignment utilizes a MUSCLE derived algorithm where

distance values are generated for each k-mer. Un-aligned

sequences with similar distance values are anchored to the

previously derived scaffold. To speed up alignment,

sum-of-pair greedy breakpoint elimination values are used to

find related anchors.

Finally, a Hidden Markov Model is used to remove bias in

areas containing differential gene content. The model makes

predictions of pairwise homology. Regions found to be

unrelated are removed from the final alignment.

B. Design Considerations

When parallelizing the progressiveMauve algorithm,

hardware considerations must be taken into account. We

choose to design the algorithm for the IBM BlueGene/P

supercomputer (BG/P) [7] because it is a massively parallel,

distributed memory system. BG/P consists of 1,024 compute

nodes in a single rack connected through a high speed

communication network. Multiple racks of BG/P can be

connected together to form a larger computer. We carry out

our simulations on the Victorian Life Sciences Computation

Initiative (VLSCI) that comprises two racks of BG/P with

2,048 compute nodes, i.e. 8,192 cores. For our development

we only used a partition of 64 compute nodes (256 cores), the

smallest partition on BG/P at VLSCI. Each compute node has

four 850 MHz PowerPC cores connected to a local memory

unit of 4GB. BG/P can be configured to run in one of three

modes. SMP mode has one process per node, up to four

threads per process and 4GB RAM per process. Dual mode

925

gives two processes per node, up to two threads per process

and 2GB RAM per process. Virtual Node (VN) mode uses four

separate single-thread processes with 1GB RAM each.

Persistent storage is accessible through a few dedicated I/O

nodes. As there is no internal storage, virtual memory is not

available. Due to these hardware limitations it is necessary to

devise methods that store data efficiently and limit the number

of I/O operations.

 Our algorithm currently runs in VN mode that maximizes

compute power but limits the size of each FASTA file to 450

million base-pairs. It is possible to increase the available

RAM by using SMP mode; however adoption of hybrid

programming models that increase design complexity will be

required to obtain computational efficiency.

C. Basic Design

When distributing the progressiveMauve algorithm onto a

parallel, distributed memory computer we adopt a

master-worker approach for parallelization. Its advantage is

that it allows for more control over memory and

computational allocation compared to other strategies. As this

implementation is to be optimized for the BG/P, the

master-worker approach was chosen. Further, its

implementation is straight forward which is desirable for a

first design.

In a master-worker approach, a single master node

distributes data and jobs to free worker nodes. The framework

used in the distributed progressiveMauve algorithm (Fig. 2) is

based around sending commands that are interpreted by a

worker node. This communication framework also supports

message sending between worker nodes, which is used to

transfer sequence data. In this case, the master node sends two

messages: one for a worker to listen to a specified rank and

one for the other worker to send to the listening node.

D. Implementation

The distributed progressiveMauve algorithm starts by

loading sequence data into RAM. Due to memory limitations,

each FASTA file is loaded onto an individual compute node

corresponding to a single MPI task. Once created, these nodes

have the ability to send specified portions of a sequence to

other MPI tasks.

The generation of the sorted k-mer list is parallelized as

follows. Each sequence is broken up into smaller fragments

that are distributed to free worker nodes. To ensure accuracy

of returned k-mers it is important for each sequence fragment

to include the maximum k-mer length. After receiving data,

each node constructs a seed mask, used to find and separate

k-mers. K-mer lists are sorted and serialized before being sent

to the master node. While the merging of the lists can be

carried out in parallel as well, we chose to have the master

node do the merging of the k-mer lists, keeping the basic

implementation as simple as possible while running on a

parallel, distributed supercomputer. Memory overhead of the

sorted k-mer list has been reduced by dynamic condensing of

like mers. Links are then made between the unique mers,

sequence positions and FASTA files. This methodology

removes repetitive data that is an advantage when aligning

similar sequences. The final sorted mer list consists of unique

mers and the number of sequences they appear in.

The current implementation has also been simplified in

order to improve code readability and installation. The

distributed algorithm consists of 7 files (reduced from 388

files) and removed all non-standard dependencies (such as

Boost and pkg-config). The modifications made to the

software have also removed a number of redundant variables

in order to trim memory usage.

E. Data Sets and Benchmarking

We first carry out performance testing of the

progressiveMauve algorithm with respect to setup, scaffold

building, alignment and HMM run times. We further profile

the memory footprint used by the algorithm. We tested our

current design using 31 complete E. Coli, Shigella and

S.pneumoniae genomes. The E. coli and Shigella data was

downloaded from http://www.biotorrents.net/ (accessed

21/3/11) [5]. The S. pneumonia data was acquired from the

NCBI Entrez website (http://www.ncbi.nlm.nih.gov/Entrez/

accessed 21/3/11) [8]. The number of genomes, sequences

and bases per genome are provided in Table I. We carry out

weak scaling simulations to test performance on BG/P using

64 computational nodes (256 cores). We measure run times

for building the scaffold using 2, 4, 6, 8, 16 and 23 genomes

combining E.coli and Shigella sequences since they have

similar number of bases per genome. To test performance for

genomes with smaller number of base pairs per genome we

use 2, 4, 6 and 8 genomes of S.pneumoniae seperately.

III. PRELIMINARY RESULTS

Investigation of memory usage revealed that generating the

sorted mer list is the most memory intensive operation. Our

improvements in data storage allow the distributed algorithm

to theoretically align a maximum of 200 bacteria sequences on

a 64 node BG/P partition which would not be possible with the

original progressiveMauve implementation. Performance

Fig. 2. Comunication framework utilized by the distribued

progressiveMauve algorithm.

926

analysis of the progressiveMauve shows that the alignment

step (Fig. 1) is the most compute intensive phase. On average

the alignment consumed 90% of total run time.

The results for building the scaffold on BG/P are shown in

Table II. Our algorithm produces a scaffold comparing two

E.coli genomes in less than 1.5 minutes resulting in a k-mer

list with over 10 million entries. The scaffold for the total data

set of 18 E. coli and five Shigella genomes took about 15

minutes with a k-mer list of over 114 million entries. Thus,

while increasing the data volume by about a factor of 11 we

find that the time to build the scaffold also increases by a

factor of 11. This also corresponds to the number of entries in

the k-mer list that has 11.4 times more entries for 23 genomes

compared with the analysis of two genomes. The analysis for

the S.pneumoniae genomes confirms this result with respect to

run time although the number of k-mers found is smaller.

Overall, using the 23 E. coli and Shigella genomes, our

implementation creates 23 FASTA nodes and 232 worker

nodes. The creation of the sorted k-mer list took 16 minutes

including setup, generating 3.7MB of compressed data per

node. Comparing the run time between the original

progressiveMauve algorithm and our implementation we

achieve a speedup of 2.8. This is notable as the sequential

version was run on a server with 1.6 GHz clock speed which is

~2 times faster than a BG/P node.

IV. DISCUSSION

While parallelization will have the greatest impact in the

alignment step, one has to sequentially parallelize the

algorithms for a complete port to massively parallel,

distributed memory systems. Also, for massively parallel,

distributed memory supercomputers with limited memory per

node one has to optimize data storage first which we have

achieved by implementing the setup and building the scaffold

first that then allows to carry out the alignment to make full

use of the computational resources of a supercomputer. Our

method of distributing the sorted k-mer list can utilize large

amounts of nodes to improve performance. Testing of the

distributed aligner using E-coli, Shigella and S.pneumoniae

genomes has confirmed the accuracy of this implementation;

having returned back results an exact match to the original

algorithm. While future focus has been put on aligning

bacteria genomes our implementation using data compression

means that it is possible to fit a human genome on each BG/P

node running in SMP mode. Size of the sorted k-mer list

depends on the amount of variation between sequences.

Similar sequences will contain matching seeds which are

condensed to positions.

V. CONCLUSION AND FUTURE WORK

Memory efficient data structures and the creation of the

scaffold in a distributed manner is the first step in devising a

scalable alignment algorithm. Further work is required to

parallize the alignment and HMM phase of the

progressiveMauve algorithm where we expect to have large

impact on run time performance. Validation and verification

as well as benchmark comparison of original and distributed

progressiveMauve algorithms will then be carried out.

Sequence alignment is a genomic comparison technique

commonly utilized in modern genomics. While alignment is

achievable on small sets of genomes, when applied to large

datasets, it becomes memory and computationally intensive,

even intractable on common computer clusters. The design of

multiple sequence alignment algorithms for massively

parallel, distributed memory systems enables comparison of

hundreds of genomes in the same time as a few genome

sequences. In this study we have laid down the basis for

multiple sequence alignment on massively parallel,

distributed memory supercomputers for large scale genomic

sequence alignment, thus enabling comparison of hundreds

instead of a few genome sequences within reasonable time.

REFERENCES

[1] A. Ghoting and K. Makarychev, “Indexing genomic sequences on

the IBM Blue Gene,” Supercomputing 2009

[2] M. A. Larkin, et al., "Clustal W and Clustal X version 2.0,"

Bioinformatics, vol. 23, pp. 2947-2948, November 1, 2007 2007.

[3] R. C. Edgar, "MUSCLE: multiple sequence alignment with high

accuracy and high throughput," Nucleic Acids Research, vol. 32, pp.

1792-1797, March 1, 2004 2004.

[4] C. Notredame, et al., "T-coffee: a novel method for fast and accurate

multiple sequence alignment," Journal of Molecular Biology, vol.

302, pp. 205-217, 2000.

[5] A. E. Darling, et al., "progressiveMauve: Multiple Genome

Alignment with Gene Gain, Loss and Rearrangement," PLoS One,

vol. 5, p. e11147, 2010.

[6] B. Ma, et al., "PatternHunter: faster and more sensitive homology

search," Bioinformatics, vol. 18, pp. 440-445, 2002.

[7] C. Sosa, B. Knudson. “IBM System Blue Genen Solution: Blue

Gene/P Applicatino Development.” 4th edition. IBM Redbooks. Sept

2009.

[8] S. V. Anguoli and S. L. Salzberg. “Mugsy: fast multiple alignment of

closely related whole genomes.” Bioinformatics vol 27(3) pp.

334-342, 2011

TABLE I

SUMMARY OF GENOMES USED FOR WHOLE GENOME COMPARISON

Organism

Number

of

genomes

Number

of

sequences

Base pairs

per genome

[Mbp]

Total

number of

base pairs

[Mbp]

E.coli 18 18 5.07 91.3

Shigella 5 5 4.58 22.9

S.pneumoniae 8 8 2.13 17.1

Mbp – Mega base pairs

TABLE II

RUN TIME AND NUMBER OF K-MERS IN SCAFFOLD

Number

of

genomes

E. coli/Shigella S.pneumoniae

run time [s] k-mers run time [s] k-mers

2 84.06 10,020,773 14.32 4,084,686

4 158.48 19,921,809 34.65 8,539,454

6 229.62 30,118,466 48.58 12,838,812

8 313.78 40,307,489 62.52 17,070,882

16 646.91 81,663,419 - -

23 929.32 114,205,647 - -

927

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

