
ABS: Sequence Alignment By Scanning

Talal Bonny and Khaled N. Salama

Electrical Engineering Program

King Abdullah University of Science and Technology (KAUST)

Thuwal, Kingdom of Saudi Arabia

Email: {talal.bonny, khaled.salama}@kaust.edu.sa

Abstract—
Sequence alignment is an essential tool in almost any compu-

tational biology research. It processes large database sequences
and considered to be high consumers of computation time.
Heuristic algorithms are used to get approximate but fast results.
We introduce fast alignment algorithm, called ‘Alignment By
Scanning’ (ABS), to provide an approximate alignment of two
DNA sequences. We compare our algorithm with the well-known
alignment algorithms, the ‘FASTA’ (which is heuristic) and the
‘Needleman-Wunsch’ (which is optimal). The proposed algorithm
achieves up to 76% enhancement in alignment score when it
is compared with the FASTA Algorithm. The evaluations are
conducted using different lengths of DNA sequences.

I. INTRODUCTION

In the field of Bioinformatics, the amount of generated

data is growing exponentially. For example, the genomic

sequence data at Genbank is doubling every 15 months.

As the growing of these data over the past several years

has far exceeded the growth in processor performance,

researchers find new algorithms/techniques to speedup the

process and to improve the performance. These algorithms

[3] [4] which are based on the dynamic programming method

such as the Needleman-Wunsch [6] (for global alignment)

and Smith-Waterman algorithms [2] (for local alignment),

provide optimal alignment in a time that is proportional to the

product of the lengths of the two sequences being compared.

Therefore, when searching a whole database the computation

time grows linearly with the size of the database.

In this work, we introduce our new and fast alignment

method, which is called ABS (Alignment By Scanning), to

provide an approximate alignment of two DNA sequences.

We compare our method with the first widely used heuristic

program for database similarity searching, ‘FASTA’ [1], and

show that our method provides up to 76% (in average)

improvement of the alignment score in comparison to the

score provided by the FASTA Algorithm. In addition to that,

the ABS Algorithm performs the alignment much faster than

the FASTA Algorithm as explaind in the next sections. We

also compare the alignment score of the ABS and the FASTA

Algorithms with the score of Needleman-Wunsch Algorithm

to show how the heuristic ABS alignment is close to the

optimal Needleman-Wunsch alignment.

To evaluate the alignment method, we compute the score of

alignment using a regular gap penalty for different lengths

of sequences. The score of the alignment is computed by

adding up the score of each pair of letters which may be

match-, mismatch-, or gap score.

The rest of the paper is organized as follows. In Section

II, we present some of the latest previous work. Section III

presents our Alignment By Scanning (ABS) Algorithm and

its rules to split and align the sequences. In Section IV, we

show the algorithm complexity and the memory requirements

of the ABS Algorithm in comparison to the Needleman-

Wunsch and the FASTA algorithms. Experimental results are

presented in Section V and concluded in Section VI.

II. RELATED WORK

A number of different methods were introduced to align

DNA, Protein, or both sequences. The first widely-used

efficient global heuristic alignment program was MUMmer

[7]. It uses suffix trees to identify maximal unique matches

(MUMs) between the two sequences. BLAT program [8]

efficiently produces indexing structures that allow one to

index whole chromosomes to find seeds, and by its simple

change, it allows much higher sensitivity. LAGAN [9] is

similar to the BLAT approach which builds alignments in

an anchor-based fashion. It allows some flexibility in the

dynamic programming around the anchors. [10] and [12]

reduce the inexact matching problem to the exact matching

problem and implicitly involve two steps: identifying exact

matches and building inexact alignments supported by exact

matches. To find exact matches [10] used suffix tree but [12]

used enhanced suffix array. [11] designed algorithm for direct

comparison and proposed an alternate scoring scheme based

on fuzzy concept.

III. ALIGNMENT BY SCANNING ALGORITHM ‘ABS’

A. Basic Idea

FASTA Algorithm restricts the shifting of whole sequence

to be only in one direction, this will result in less number

of matching between both sequences because there is no

flexibility in shifting the sequences. Increasing the number of

matches may be achieved when part of the sequence (we call

it subsequence) is shifted in one direction and other part is

shifted in other direction. Therefore, splitting the sequence

into many subsequences and align each subsequence

independent from the other increases the chance to have

more matches. For that, we introduce fast alignment method

to provide an approximate alignment of two DNA sequences.

We call our algorithm ‘ABS’ (Alignment By Scanning)

because it scans the two sequences simultaneously from the

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 928

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

index 1 2 3 4 5 6 7 8 9

S: A C G T A T C G A

T: T A C G A C G A T

S:

T:

Alignment

Un-aligned sequences

Aligned sequences

S: A C G T A T C G A

T: T A C G A C G A T

Spli�ng

at Barrier

T C G A -

- C G A T

- A C G T

T A C G -

A

A

Aligned sequences

Spli�ng

at Barrier

A B

Fig. 1. A: ABS alignment example. B: ABS block diagram. ABS splits
the sequences into subsequences at the Barrier. Each subsequence is aligned
separately

beginning till the end to find an approximate alignment and

to compute its score.

The ABS starts from the beginning of the sequences (at

position 1) and scans the sequences to find a matching

between them. The position at which there is a match

between S and T creates a split (we call it barrier). This

barrier splits the sequence into two subsequences. Each

subsequence is aligned independent from the others but in

parallel with them. During the scanning, the alignment is

done as it is in the FASTA Algorithm by computing the

relative positions of each character in the two sequences

and finding the highest repeated offset which refers to the

amount and direction of shifting.

Fig. 1 shows an example of aligning two sequences using

our alignment technique ‘ABS’. The ABS scans the two

sequences S and T starting from position 1 and continues

forward till the end. In the same time, it computes the relative

positions and the offsets. At the position 5, it finds that there

is a match between S and T with letter A. Therefore, the

ABS splits the sequence into two subsequences, aligns the

the first subsequence, and continues scanning the the second

subsequence. At the end of scanning, both sequences will

be aligned and the barrier A will be inserted between them.

B. Rules of Splitting the Sequences

Splitting the sequences into subsequences is based on the

way of selecting the positions of the barriers. In the ABS, we

do not consider every match in both sequences as a barrier

which splits the sequences into subsequences. Instead, we

select the barrier such that there is no relation between the

letters of the sequence S before the barrier and the letters of

the sequence T after the barrier and vice versa in range of ‘R’

searched letters before and after the barrier. The parameter

‘R’ is given in the beginning of the alignment and is based

on the score of match, mismatch and gap. If this condition is

not met, we ignore the barrier and do not split the sequence

at that position.

Fig. 2 shows an example how to find the barriers at which

the sequences will be split. In this example, we consider that

index 1 2 3 4 5 6 7 8

S: C C A T T A T G

T: T T A C C A G T

R=1

match

index 1 2 3 4 5 1 2

S: C C A T T A T G

T: T T A C C A G T

Spli�ng

R=1

Sub-seq.1 Sub-seq.2barrier

Fig. 2. An example for determining the barrier to split the sequences

the range of searching before and after the barrier is 1 letter,

i.e. R=1. By scanning the sequences, we notice that there are

two matches (at positions 3 and 6). For the match at position

3 (letter ‘A’), there is relation between S and T around the

match ‘A’ because the letter at position 2 of sequence S and

the letter at position 4 of sequence T are the same (which is

‘C’). For that, we do not consider the match ‘A’ at position

3 as barrier. According to this rule, we may consider the

second match, which is at position 6, as a barrier because

there is no relation between S and T around it in a range of

1 letter. In this case, the sequences S and T will be split into

two subsequences at position 6 and each subsequence will

be aligned independent from the other.

If the ABS could not detect any match during the scan, it

creates a virtual barrier after a certain number of characters,

‘L’, which is given as input parameter. At this virtual barrier

the sequences S and T are split into two subsequences. The

condition to select the virtual barrier is the same as the real

barrier, i.e., there should be no relation between S and T

around the virtual barrier. If this condition is not met after L

characters, the next characters are checked until the condition

is met. To compute the score of alignment, we use:

Alignment Score = (m × match score) (1)

+ (2 × s × gap score)

+ (d × mismatch score)

such that, m is the number of matches. s is the number of

shifts ⇒(2 x s) is the number of gaps. d is the number of

mismatches. The scores of the gap, ‘gap score’, and the score

of the mismatch, ‘mismatch score’, have always negative

values. If the length ‘L’ of the subsequence is known, then

the number of mismatches ‘d’ can be computed as:

d = L - m - s.

Finding the highest score of alignment is based on the

scores of match, mismatch, and gap. That means, having

more matches not always means getting the best alignment

score because more gaps and mismatches may be added

and these will decrease the score of alignment. For that,

the ABS gets the scores of match, mismatch and gaps as

input parameters and computes the score of alignment for

929

Algorithm Algorithm Complexity Memory Requirments

Needleman-Wunsch O(m x n) (m x n)

FASTA O(w x (m + n) (m + n + (w x (m + n)))

ABS O(min(m,n)) (2 x (m + n) + 1)

Fig. 3. Comparing the complexity and the memory requirements between
the Needleman-Wunsch, the FASTA and the ABS

each possible alignment, then it selects the alignment which

achieves the best score.

IV. ALGORITHM COMPLEXITY AND MEMORY

REQUIREMENTS

In this section, we compare between the complexity and the

memory requirements of the Needleman-Wunsch Algorithm,

the FASTA Algorithm, and the ‘ABS’ Algorithm.

In case of the Needleman-Wunsch Algorithm [6], let m, n

are the lengths of the query sequence ‘S’ and the database

sequence ‘T’, respectively. As the Needleman-Wunsch Algo-

rithm is based on dynamic programing, then its complexity

is O(m× n).
The memory requirement of the Needleman-Wunsch Algo-

rithm based on the length of the sequence S and T, i.e, m

and n. Therefore, its memory requirement is (m× n).
In case of the FASTA Algorithm [1], let r is number of sub-

alignments. and let w is the width of the restricted area in

which the dynamic programing is applied such that w << n.

The complexity of the FASTA Algorithm is O(w×(m+n)).
The memory requirement of the FASTA Algorithm based on

the length of the sequence S and T and the width ‘w’ of the

restricted area in which the dynamic programing is applied.

To store the indices of each character of the sequences S

and T, we need m and n memory cells, respectively. To

apply the dynamic programing on the restricted area, we need

(w× (m+n)) cells. Therefore, the memory requirements of

the FASTA Algorithm is (m+ n+ (w × (m+ n))).
In case of the ABS Algorithm, the algorithms scans the two

sequences together and splits them into many sub-sequences

during the scan. So, its complexity is O(min(m,n)).
Therefore, the ABS Algorithm is much faster than the

FASTA Algorithm.

To store all possible offsets in the range [-m to n], we need

m + n + 1 cells. Therefore, the memory requirement of the

ABS Algorithm is (2× (m+ n) + 1).
Fig. 3 shows summary of comparing the algorithm complex-

ity and the memory requirements between the Needleman-

Wunsch, the FASTA and the ABS.

V. EXPERIMENTAL RESULTS

The evaluations are conducted using different lengths se-

quences of HUMAN division downloaded from the well

known DNA sequences of the database ”DNA Data Bank

of Japan” (ddbj) [13]. Figure 4 shows the accession number

of the sequences which are used for our evaluations. The

sequences are divided into four different lengths, 50, 100,

200, and 500 nucleotides. The first row of the table presents

Length of 50 Length of 100 Length of 200 Length of 500

GX386459 GX389453 HQ032039 FQ377774

GX713604 GX689428 GX523452 GU758572

GX714613 GX687421 GX862587 GU532615

GX716623 GX687420 GX689434 HM669508

GX390496 GX680445 GX536532 HM668499

GX714618 HI955819 GL688802 GU754539

GX713601 GX672374 GU811161 GU908783

GX715614 GX285798 GX405587 GU511336

GX390494 HQ662280 GX512352 GU517380

GX390497 GX871623 GX650226 GU521405

GX713600 AF501247 GL688805 GU537666

Fig. 4. The accession number of the sequences used for our evaluations.
The first row shows the query sequences. the remaining rows show the
database sequences

-120

-100

-80

-60

-40

-20

0

A
li

g
n

m
e

n
t
S

c
o

re

Sequences of Length 50

Needleman-Wunsch ABS FASTA

Fig. 5. Results of aligning sequences of length 50 using Needleman-
Wunsch, ABS, and FASTA Algorithms

the query sequence for each different length. The remaining

rows shows the database sequences.

We compare our method with the first widely used heuristic

program for database similarity searching FASTA. To do

that, we align the query and the database sequences which

are presented in Figure 4 using FASTA35 program [5]. This

program is slightly modified to align the sequences globally.

The option ”-a” of the FASTA35 program is used to to align

all of both sequences. The k-tuple parameter of the FASTA35

is selected to be ’1’ to find the best alignment regardless the

time required for alignment.

We also compare our method with the Needleman-Wunsch

Algorithm to show how our heuristic ABS alignment is close

to the optimal Needleman-Wunsch alignment. The score of

match, mismatch or gap are selected to be the same in all

three programs (ABS, FASTA35, and Needleman-Wunch).

The experimental results are presented in Figures 5 - 8.

Each figure shows the score of alignment for the Needleman-

Wunsch, the ABS, and the FASTA Algorithms. The last

column in each figure shows the average alignment score for

the different programs through all the database sequences.

Figure 5, Figure 6, Figure 7, and Figure 8 show the results

for database sequences of length 50, 100, 200 and 500

Nucleotides, respectively.

In all figures, the alignment score of the ABS Algorithm is

better than the score of the FASTA Algorithm for all database

930

-160

-140

-120

-100

-80

-60

-40

-20

0

A
li

g
n

m
e

n
t
S

c
o

re

Sequences of Length 100

Needleman-Wunsch ABS FASTA

Fig. 6. Results of aligning sequences of length 100 using Needleman-
Wunsch, ABS, and FASTA algorithms

sequences. For example, the alignment score of the ABS

better than the score of FATSA on average of 76%, 30%,

50%, and 37% for the sequences of length 50, 100, 200, and

500 Nucleotides, respectively.

The figures also show how far is the result of the heuristic

algorithms (ABS and FASTA) from the result of the optimal

one (Needleman-Wunsch). The score of the ABS is much

closer to the score of Needleman-Wunsch in comparison

to the score of the FASTA for the same sequence length.

For example, in the case of length 50 Nucleotides, the

average alignment score of the ABS is 44% far from the

optimal score of the Needleman-Wunsch but the FASTA is

154% far from the Needleman-Wunsch. This shows that the

alignment score of the ABS is more than 100% closer to the

optimal alignment score of Needlman-Wunsch Algorithm in

comparison to the FASTA Algorithm.

On the other hand, the processing time of our ABS Algorithm

is much faster than the FASTA and the Needleman-Wunsch

algorithms (as discussed in Sec. IV). For example, consid-

ering m and n are equal to 500, then the complexity of the

Needleman-Wunsch will be O(250000). Considering that the

width of the restricted area w=10, then the complexity of the

FASTA will be O(10000). As both sequences have the same

length. then the complexity of the ABS algorithm will be

O(500).

VI. CONCLUSION

We have presented new sequence alignment algorithm to

provide approximate alignment in comparable time. Our

technique splits the sequences at special positions into many

subsequences and then aligns each subsequence indepen-

dently To measure the efficiency of our algorithm we com-

pared it with the FASTA Algorithm and showed that our

algorithm achieves better results which are 3.5x closer to

the optimal alignment score when it is compared with the

FASTA Algorithm.

REFERENCES

[1] European Bioinformatics Institute Home Page, FASTA searching pro-
gram, 2003. http://www.ebi.ac.uk/Tools/sss/fasta/.

-400

-350

-300

-250

-200

-150

-100

-50

0

A
li

g
n

m
e

n
t
S

c
o

re

Sequences of Length 200

Needleman-Wunsch ABS FASTA

Fig. 7. Results of aligning sequences of length 200 using Needleman-
Wunsch, ABS, and FASTA algorithms

-800

-700

-600

-500

-400

-300

-200

-100

0

A
li

g
n

m
e

n
t
S

c
o

re

Sequences of Length 500

Needleman-Wunsch ABS FASTA

Fig. 8. Results of aligning sequences of length 500 using Needleman-
Wunsch, ABS, and FASTA algorithms

[2] T. F. Smith and M. S. Watermann. Identification of common molecular
subsequence. Journal of Molecular Biology, 147:196-197, 1981.

[3] Talal Bonny, M. Affan Zidan, and Khaled N. Salama: An Adap-
tive Hybrid Multiprocessor Technique for Bioinformatics Sequence
Alignment. The 5th Cairo International Conference on Biomedical
Engineering Conference, (CIBEC10), pp.112-115, December, 2010.

[4] M. Affan. Zidan, Talal Bonny, and Khaled N. Salama: High Perfor-
mance Technique for Database Applications Using Hybrid GPU/CPU
Platform. Proceedings of the great lakes symposium on VLSI
(GLSVLSI’2011), pp 85-90. May 2-4, 2011.

[5] http://fasta.bioch.virginia.edu/fasta www2/.

[6] Needleman, S. and Wunsch, C. A general method applicable to the
search for similarities in the amino acid sequence of two sequences.
Journal of Molecular Biology, 48(3), 443-453, 1970

[7] Delcher, A. L., S. Kasif, R. D. Fleischmann, J. Peterson, O. White,
and S. L. Salzberg. Alignment of whole genomes. Nucl. Acids Res.
27, pp. 23692376, 1999.

[8] Kent, W. J. BLATthe BLAST-like alignment tool. Genome Res. 12
(4), pp. 656664, 2002.

[9] Brudno, M., C. Do, G. Cooper, M. Kim, et al. LAGAN and Multi-
LAGAN: Efficient tools for large-scale multiple alignment of genomic
DNA. Genome Res. 13, pp. 721731, 2003.

[10] Abouelhoda MI, Kurtz S, Ohlebusch E. Replacing suffix trees with
enhanced suffix arrays. Journal of Discrete Algorithms, 2: pp. 53-86.
2004

[11] Subhra Sundar Bandyopadhyay, Somnath Paul and Amit Konar, Im-
proved algorithm for DNA sequence alignment and revision of Scoring
matrix, Proc. Of ICISIP 2005.

[12] Hoffmann S, Otto C, Kurtz S, et al. Fast mapping of short sequences
with mismatches, insertions and deletions using index structures. PLoS
Comput Biol 5:e1000502, 2009

[13] http://www.ddbj.nig.ac.jp/

931

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

