
 

 


 

Abstract— Transcription factors and microRNAs are both 
considered pivotal regulators of gene expression. Numerous 
computational methods have been developed to predict their 
targets. These methods, although powerful, provide a static 
snapshot of how genes may be regulated by transcription 
factors and microRNAs. We propose a method that combines 
these prediction data with co-expression analysis and a 
supervised learning algorithm to determine the main regulators 
in different pathways of ER+ and ER- tumors. 

I. INTRODUCTION  

RANSCRIPTION factors (TFs) and microRNAs are well-
known regulators of gene expression. The former bind 

directly to regulatory regions of DNA whereas the latter 
regulate the expression of genes at a post-transcriptional 
level. Although they have different mechanisms of 
regulation, there is evidence [1] suggesting that transcription 
factors and microRNAs regulate target genes in a 
coordinated way. In order to facilitate the elucidation of 
these regulation mechanisms, we propose an integrative 
approach to analyze mRNA and microRNA expression data 
together with functional target predictions of TFs and 
microRNAs. 

Traditional microarray expression profiling often leads to 
the identification of hundreds, even thousands, of 
differentially expressed genes in a study. Subsequent 
functional annotation analysis (e.g., gene ontology) can 
classify these genes into different biological functional 
groups. However, this does not always reflect collaborative 
activities among the genes in a pathway with less significant 
expression changes but still critical for signaling 
transduction and transcriptional regulation. To help with 
this, differential co-expression analysis can be used to 
identify genes whose expressions are highly correlated in the 
phenotype of interest. As a variant of this approach, gene set 
co-expression analysis takes advantage of predefined gene 
sets with known biological functions and identifies subtle 
co-expression differences between different phenotypes [2]. 
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In regards to prediction, computational methods that 
predict the gene targets for different TFs and microRNAs 
are a key to postulating TF-gene and microRNA-mRNA 
regulatory modules. There are numerous prediction 
algorithms based solely on sequence analysis, for TFs [3][4], 
and on sequence and structure data for microRNAs [5]. 
Successful attempts to create a framework that integrates 
both types of predictions have been implemented [6]. 
However, none of these predictive or integrative approaches 
take into consideration expression data. They simply provide 
a static picture of how the TFs and microRNAs might 
regulate their target genes. Our method combines prediction 
information with mRNA and microRNA expression data. By 
applying machine learning methods to the target genes in 
differentially co-expressed genes sets (pathways and targets 
of TFs) and expression data, we attempt to provide a ranking 
list of TFs and microRNAs for a specific pathway. 

We describe our approach using the mRNA and 
microRNA expression data generated from a breast tumor 
study [7]. Estrogen receptor (ER) plays a pivotal role in 
breast cancer development and progression. As a ligand-
dependent TF, ER exerts both genomic and non-genomic 
effects that are involved in breast cancer cell differentiation, 
proliferation, survival, invasion and angiogenesis by 
interacting with other TFs and signaling pathway genes. 
Understanding the molecular mechanisms of ER action in 
tumors with different ER status (ER+ and ER–) will provide 
insight into the potential novel targets for breast cancer 
treatments [8]. Here we demonstrate the usefulness of our 
integrative method by analyzing microarray data sets from 
ER+/ER– breast tumors and uncovering the relationships 
among TFs, microRNAs and pathway genes that are 
associated with these tumors. 

II. METHODS 

Our integrative approach started by obtaining the 
differentially expressed mRNAs and microRNAs from ER+ 
and ER– tumor microarray gene profiles. We then identified 
the differentially co-expressed (DC) pathway gene sets and 
TF target gene sets. MicroRNA target genes were predicted 
using an online tool. Gene set overlap test was performed to 
associate the TF and microRNA target sets to the DC 
pathway genes. Finally for a DC pathway with multiple 
associated TFs and microRNAs, we used a random forest 
classifier to determine the importance of these putative 
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Fig. 1. Data analysis flowchart. The two gray modules provide the final 
prediction of the microRNAs and TFs that regulate a pathway. 

regulators. Figure 1 shows a flowchart of the entire analysis 
process. 

A. Expression data for microRNA and mRNA 

The recently published concurrent mRNA and microRNA 
expression profiles on ER+/ER– breast tumors were used in 
this work [7]. The profiling was performed using duplicate 
hybridizations for 99 tumor samples on Agilent “Human 
microRNA Microarray Kit (V2)” and human genome 444K 
one-color oligo array. Among these tumors, 60 are ER+ and 
35 are ER–. We downloaded the raw microRNA data from 
the Gene Expression Omnibus (GEO) with accession 
number GSE19536 and the normalized mRNA expression 
data with accession number GSE19783. 

B. Differential expression analysis of microRNA and 
mRNA 

Expression analysis was carried out using packages in 
Bioconductor. The raw microRNA data were normalized 
with the Robust Multichip Averaging (RMA) method using 
the AgiMicroRna package [9][10]. Those microRNAs that 
were detected in less than 10% of the samples were filtered 
out. This preprocessing step yielded 498 microRNAs that 
were subsequently analyzed for differential expression 
between the ER+ and ER– tumors. We used the limma 
package with the Benjamini–Hochberg correction for 
multiple tests. The adjusted p-value threshold was set to 
0.05. 

Since the mRNA data were already normalized, our first 
preprocessing step was to identify the least variable mRNA 
probes. Probes with a coefficient of variability of less than 
50% were filtered out.  This left a total of 8,589 probes for 
further analysis, all of them with a unique Entrez Gene ID. 
The differential expression analysis was performed using a 
similar procedure as the one described for microRNA data. 

C. Identification of differentially co-expressed gene sets 

Gene set co-expression analysis (GSCA) [2] is a statistical 
method to identify DC gene sets. It can identify whether 
genes in a given pathway have distinct co-expression 

patterns between two different biological conditions. The R 
package GSCA [2] was used for the analysis of the 
following two main corpora of data: 
1. Pathways: We considered two types: a) canonical 

pathways: obtained from the Molecular Signatures 
Database (MSigDB) [11]. It consists of gene sets for 
880 pathways collected from Reactome, KEGG and 
BioCarta; and b) signaling transduction pathways: 
obtained all genes that are part of the 25 pathways listed 
by NETPATH [12]. Each pathway gene set has 
experimentally confirmed genes known to play an 
active role in the pathway 

2. Transcription factor target sets:  we downloaded 
information about 615 TFs from MSigDB [11]. These 
TFs are defined in TRANSFAC ver.7.4 [13]. For each 
TF, we obtained a TF target gene set that lists all the 
genes for which the TF is predicted to bind in their 
promoter region (defined as +2Kb, –2Kb from the 
transcription start site)  

Following the procedure of GSCA, we computed 
Spearman’s correlation coefficients for all gene pairs within 
the gene sets described above and a dispersion index to  
quantify the extent of differential co-expression of each 
individual  set (See [2] for details). Significant DC gene sets 
were identified through sample permutation between the 
ER+ and ER– tumors. The permutation was performed 
10,000 times to produce gene set specific p-values.  The 
gene sets with a p-value < 0.05 were considered to be 
differentially co-expressed.  

D. microRNA target prediction 

ExprTarget [14] is an online human microRNA target 
prediction database which integrates several microRNA 
target prediction algorithms (such as PicTar [5], and others). 
ExprTarget has shown to greatly improve microRNA target 
prediction, compared to individual prediction algorithms, in 
terms of sensitivity and specificity based on the evaluation 
of a gold standard dataset formed from the experimentally 
supported targets in TarBase [15]. We downloaded all 
microRNA-gene predictions and filtered out those with a 
score less than 3. We further eliminated from our analysis 
the microRNA-gene pairs when the microRNA was not 
differentially expressed based on our differential expression 
analysis. We finally obtained a total of unique 3,959 
predicted target genes.  

E. Gene set overlap test 

In order to sort out potential TFs and microRNAs that may 
regulate genes on each DC pathway, we selected DC TF 
target sets and differentially expressed microRNAs target 
sets that significantly overlapped with the genes in the DC 
pathways. For each DC pathway, the significance of overlap 
of genes in the pathway between a DC TF target gene set 
and between a microRNA target gene set, was tested using 
the hypergeometric distribution. Before the test, the gene 
sets with the same TF but different TRANSFAC matrix IDs 
were combined into a unique transcription factor name. This 
yielded a smaller number of DC TF target sets. In addition, 
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Fig. 2.  Data layout for random forest classification.  

TABLE I 
LIST OF PATHWAYS WITH SIGNIFICANTLY OVERLAPPED GENES OVER TF 

TARGET SETS AND THEIR BIOLOGICAL FUNCTIONS 

Pathway name Biological function 

KEGG_CELL_CYCLE Cell cycle 
KEGG_ECM_RECEPTOR_INTERACTION Cell adhesion, proliferation 
KEGG_ERBB_SIGNALING_PATHWAY Signal transduction 
KEGG_MAPK_SIGNALING_PATHWAY Signal transduction 
KEGG_MOTOR_SIGNALING_PATHWAY Signal transduction 
NETPATH_Alpha6_Beta4_Integrin Cell invasion, differentiation
NETPATH_AR Signal transduction 
NETPATH_EGFR1 Signal transduction 
NETPATH_leptin Signal transduction 
NETPATH_TGF-beta Signal transduction 

before testing the overlap between pathway genes and a 
microRNA target gene set, we first reduced the number of 
microRNA-gene pairs by excluding the genes which did not 
have opposite expression profiles as the microRNAs that are 
predicted to regulate them (i.e., the gene is over-expressed 
when the microRNA is under-expressed, and vice versa) 

F. Random forest and variable importance 

To determine the level of confidence for microRNAs and 
TFs as being putative regulators of a pathway, we applied 
the random forest (RF) classification algorithm [16]. RF was 
used as a supervised classification method on each pathway 
to predict the genes’ expression level. We used as predictor 
variables the information of the microRNAs’ expression 
levels and the TFs that are predicted to target those genes. 
Our ultimate goal was not to find a classifier to predict the 
expression level of genes but to use RF to measure the 
importance of each predictor variable, and thus obtain a 
group of TFs and microRNAs that can help differentiate the 
expression level of the genes in the pathway. These, in turn, 
will be the putative regulators. 

We limited our analysis to the differentially expressed 
genes and microRNAs.  For each gene, we used the 
information obtained about the TFs predicted to regulate that 
gene [11] and the microRNAs predicted to target the gene 
[14], as described before. For the microRNAs, we did not 
impose the conditions described in section E (i.e., opposite 
expression levels). The union of all TFs and microRNAs 
that are linked to a pathway were used as variables for a 
supervised learning predictor: 

Tp = (yi, xi) with i = 1 to np, where np is the number of 
differentially expressed genes in pathway p. The response 
vector y contains the np expression levels for the genes: “up” 
or “down” if the gene is over- or under-expressed in ER+. 
Figure 2 illustrates the layout of the data. Each vector xi has 
m = k + r predictor variables:  

xij for j = 1 to k contains information related to the k 
microRNAs in the pathway. Each xij is coded as: “0” if 
microRNA j does not target gene i; “+1” or “–1” if 
microRNA  j targets gene i and is over- or under-expressed 
in ER+ respectively. 

xij for j = k+1 to k+r contains the information of the r TFs 
in the pathway. The variables are coded with a “0” if TF k is 
not present in the promoter region of gene i; or with a “1” if 
present. 

For each pathway, an ensemble of 200 trees was created. 
One third of the variables were randomly chosen at each tree 
level and one third of the samples were left as out of bag. 
Variable importance was determined after performing 

permutations on the trees to assess the change in their 
predicting power. Each variable was assigned a mean 
decrease of accuracy score and the ranking of variables for 
the pathway was based on this score. The analysis was 
implemented with the R package randomForest. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

For the microRNA and mRNA microarray expression 
profiles described in section A, the number of differentially 
expressed microRNAs is 60, of which 24 are over-expressed 
and 36 are under-expressed in ER+ tumors. The number of 
differentially expressed genes is 2,770 which includes 1,333 
over-expressed and 1,437 under-expressed in ER+ tumors. 

We applied the GSCA approach to the mRNA expression 
profiles. For canonical pathways (880) and signaling 
transduction pathway gene sets (25), we identified 253 
pathway gene sets as DC between ER+ and ER– tumors (p-
value < 0.05). For TF target gene sets (615), 404 of them 
were identified as DC (p-value < 0.05). We further took 97 
DC pathways with smaller p-values and 115 DC TF target 
gene sets to test for gene set overlap. 66 pathways were 
identified having statistically significant gene overlap with 
various TF target sets at a p-value of 0.05. A selected list of 
pathways can be found in Table I. 

The gene set overlap test procedure output 2 pathways 
(MAPK signaling pathway and NETPATH AR) whereas the 
RF analysis provided a ranking of TFs and microRNAs for 
each pathway. Focusing on the MAPK signaling pathway, 
the overlap test yielded 8 under-expressed microRNAs (hsa-
miR-19a, hsa-miR-135b, hsa-miR-203, hsa-miR-223, hsa-
miR-23a, hsa-miR-24) and 7 over-expressed target genes 
(CACNA1D, DUSP5, DUSP16, IKBKB,  MAP3K12, 
RASA1, RPS6KA5) in ER+ tumors (Figure 3). The figure 
was constructed, based on the known pathway structure, by 
taking the above mentioned genes and microRNAs and the 8 
top-ranked TFs (with their gene targets) reported by RF 
(Figure 4). In Figure 3, the circles denote the TFs; the genes 
(rectangles) and microRNAs (ovals) are grey if under-
expressed and white if over-expressed in ER+ tumors. 
Dotted arrows between genes indicate precedence through 
intermediate genes in the pathway. 

Relating our analysis to known facts about this pathway, 
we note that the epidermal growth factor receptor (EGFR) is 
significantly over-expressed in ER– tumors. Activation of 
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Fig. 3.  Identified microRNAs and TFs as potential regulators in the MAPK 
signaling pathway.  

 
 

Fig. 4.  Ranking obtained from RF for the MAPK signaling pathway. 

the EGFR/ERBB2 pathway initiates a kinase signaling 
cascade that has a variety of effects on tumor cells, such as 
stimulation of cell proliferation, enhanced invasion and cell 
motility as well as inhibition of apoptosis. The hyperactivity 
of GFR signaling has been associated to the dynamic nature 
of ER status and resistance to endocrine therapy [17]. EGFR 
is targeted by the TF CEBPA, highly ranked in our RF 
analysis for this pathway and known to cause growth arrest 
by inhibiting different kinases. The rest of the TFs have 
been reported to regulate genes involved in the MAPK 
signaling pathway [18]. 

Traditional gene functional enrichment analysis may miss 
some biological relationships between differentially 
expressed genes and their common regulators such as TFs 
and microRNAs. The approach adopted in our work may 
help reveal those underlying relationships in the specific 
biological context. Our study demonstrates that this 
integrative approach can uncover important biological 
pathways and identify important players involved in the 
regulation of those pathways such as key pathway genes as 
well as TFs and microRNAs. 
 

IV. CONCLUSION 

We proposed an integrative bioinformatics approach to 
combine microRNA and mRNA expression profiling to 
discover important biological pathways involved in ER+ and 

ER– breast tumors. Our approach based on statistically 
significant gene set overlap gives us a coherent set of genes, 
framed in the context of a pathway, and their possible 
regulators. Additionally, by applying the RF algorithm we 
were able to enhance our initial list of possible regulators to 
include interactions between TFs and microRNAs.  
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