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Abstract—A workflow for associating fuzzy clusters to 
biological pathways has been implemented as a Java-based 
software tool. Its software implementation is comprised of a 
correlation-based fuzzy c-means algorithm and an enrichment 
test on Kyoto Encyclopedia of Genes and Genomes’ pathways. 
We applied this workflow to gene expression in classification of 
lung cancer cell types and achieved satisfactory results. The 
software could aid in the validation of results of fuzzy clustering 
algorithms and the exploration of un-annotated associations 
between genes and gene ontology categories. 
 

I. INTRODUCTION 
HE study of human genome involves a tremendous 
amount of data, and clustering methods are often used to 

explore the patterns within. Clustering algorithms are 
classified into crisp or fuzzy methods. Researchers have 
shown that most of the commonly used crisp algorithms were 
unable to identify genes whose expression is similar to 
multip le, distinct gene groups. Though crisp algorithms failed 
to mask the relationships between genes that are co-regulated 
with different groups of genes, fuzzy clustering method was 
able to identify those relationships[1]. 

In clustering microarray data, a  fuzzy clustering algorithm 
assigns a gene with degrees of memberships to multip le 
clusters. The membership is a value between 0 and 1 with one 
indicating a complete association to a cluster [2]. During 
clustering, the algorithm min imizes an objective function. A 
recent study has shown that the fuzzy c-means (FCM) 
algorithm with a correlation-based objective function 
outperforms the algorithm with Euclidean distance metrics 
[3]. 

Biologists use different databases to store and for sharing 
biological in formation. In addition to millions of scientific 
publications, these databases provide descriptive genomics, 
gene annotations, and simulat ion of bio logical data. 
Constantly updated and verified, most of them have Web 
interfaces to facilitate user’s research [4, 5]. Among the 
informat ion are the gene ontology (GO) and pathway 
databases. The GO describes the molecular functions of gene 
products and their roles in  mult i-step biological processes. 
The database is created using existing genomic databases and 
 

Manuscript received March 26, 2011.  
M. Zhang is with the Computer Science Department, Winona State 

University, Winona, MN 55987, USA (phone: 507-457-2980; fax: 
507-457-2464; e-mail: MZhang@winona.edu).  

B. Adamu and C. Lin are with the Computer Science Department, Winona 
State University, Winona, MN 55987, USA. 

P. Yang is with Department of Health Science Research, Mayo Clinic 
College of Medicine, MN 55905, (e-mail: Yang.Ping@mayo.edu). 

published literatures. It is built on a set of controlled 
vocabulary which describes gene and gene product attributes 

in organis ms. The GO categories have often been adopted in 
validating the results of clustering in several studies [6, 7]. 
The pathway is another way to capture the roles genes play in 
biochemical react ions that help sustain life. A pathway is a 
sequence of enzymat ic reactions by which one biological 
material is converted to another [8]. Identifying genes in 
biological pathways is an important instrument for early 
disease detection and diagnosis.  

With a fuzzy clustering method, genes are grouped 
together according to a mathematic or statistical metric. 
Given the fact that a gene may  play roles on multip le 
pathways, the numbers of genes attributed to cancer 
prognosis would be abundant. However, studies have 
suggested that underlining pathways could be limited and 
essentially identical. We propose a workflow to integrate 
fuzzy clustering and pathway analysis, and apply the 
workflow to classify lung cancer cell types. The rest of the 
paper is organized as follows. We introduce a workflow for 
integrating fuzzy clustering and pathway analysis in Section 
II. Then, we d iscuss a software implementation of the 
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Fig. 1. Classification of cell types by integrating FCM analysis and 
Pathway annotations. 

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 936

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



  

workflow in  Section  III, and apply  it  to classify cell types of 
lung cancer in Sect ion IV. We conclude in Sect ion V. 

II. INTEGRATION OF FCM AND KEGG PATHWAYS 
The workflow shown in Fig. 1 illustrates a means to 

associate fuzzy clusters of genes to predefined functional 
categories, such as GO terms or pathways. An FCM 
algorithm is applied to gene expression data to produce 
cluster centroids and to assign each gene to cluster centroids 
with memberships. In relating a fuzzy cluster to biological 
pathways, we test the enrichment of pathways by the cluster 
of genes. Clusters of genes with fuzzy memberships, p-values 
of enrichment tests and gene annotations are inputs to the 
visualizat ion software developed in -house. After genes are 
identified, they are used in computing new features in 
classifications of cell types of lung cancer. 

TABLE I. TABULAR FORM OF FUZZY MEMBERSHIPS 
Gene symbol Cluster 1 Cluster 2 Cluster 3 
PAPSS2 0.089 0.28 0.631 
SULT1A2 0.044 0.38 0.576 
GPD1 0.69 0.134 0.176 

A. Fuzzy C-means Algorithm 
Studies have shown that fuzzy clustering methods are 

capable of identify ing genes whose expression is similar to 
multip le, distinct gene groups [6]. When it is used, a fuzzy 
clustering algorithm assigns genes to a given number of 
clusters such that each gene may belong to more than one 
cluster with different degrees of memberships [2]. Outputs 
from fuzzy clustering include matrices of memberships 
(Table I) and cluster centroids. For example, gene PAPSS2 
belongs to Cluster 2 by membership 0.28 and to Cluster 3 by 
0.631. A fuzzy membership is a value between 0 and 1 with 
one indicating a complete association to a cluster. A gene has 
a total membership value of 1.0 across the clusters. 

TABLE II. PATHWAY ENRICHMENT OF FUZZY CLUSTERS 

Ck Functional Category nk mk p-Value 
6 Cell cycle process  206 30 8.61E-08 
 Cell cycle    36 8.38E-10 
 Cellular metabolic process  139 2.39E-17 
28 Defense response  120 27 1.13E-12 
 Immune response  43 4.52E-25 
 Response to external stimulus  26 9.38E-11 
31 Immune response 77 16 2.35E-06 

B. Enrichment Test 
Genes are classified by GO terms  or pathway annotations. 

In GO, annotation terms are organized into biological 
process, molecular function and the cellular component 
categories. In Kyoto Encyclopedia of Genes and Genomes 
(KEGG), they are mapped to pathways. Enrichment test is 
done assuming a hypergeometric probability distribution of 
genes within a cluster. Hypergeometric probability 
distribution can be used to compute a probability that an 
observed enrichment of a functional category comes from 

randomly  selected genes [9]. The significance (p-value) o f 
enrichment is defined as: 

p-value = ��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
	
	

��
�

�
��
�

�

� k

k

k

kk
M

mi

k

n
N

in
MN

i
Mk

k

                (1)  

        

 
Here Nk and nk are the numbers of genes in fuzzy cluster k 

before and after membership threshold, respectively; and Mk 
and mk are the numbers of genes in the cluster assigned to a 
functional category before and after membership threshold, 
respectively. 
 

Examples of p -values computed using GO biolog ical 
processes are given in  Table II. It  is worth of noting that a 
cluster may enrich multip le pathways, e.g., Cluster 6 
significantly  enriches cell cycle, cell cycle, and  cellular 
metabolic process pathways. 

III. SOFTWARE IMPLEMENTATION 
Graph-based methods are often used in visualizing cluster 

structures and their relationship. They include heatmaps, 
neighborhood graphs and scatter plots [6, 10, 11]. Though 
results of hierarchical clustering are best presented as trees, 
i.e., dendrograms, results of centroid-based clustering is 
commonly pro jected into 2-D space like scatter plots [12]. 
With scatter plots, one may v isualize the clustered data in 
different colors and with annotations to represent the cluster 
membership. 

The workflow is implemented as a Java applet with 
Web-based user interfaces. Java Servlets and Apache Derby 
are used to build, store data to and query biological data from 
local and remote servers. To speed up the data analysis, the 
GO databases are downloaded from the GO consortium [4] 
and stored locally. The software accesses the remote KEGG 
database [13] to acquire its pathway networks. 

A. Remote Access to Sources of Annotations 
Our software implementation takes in three datasets: gene 

clusters with fuzzy memberships, gene annotations that 
reveal the relat ionships between genes and functional 
categories (e.g. pathways, biological processes), and the 
p-values of enrichment tests. These datasets are modeled with 
three entity sets, Cluster Membership Values, Pathway 
Information, and Cluster p-value in our database. 

The software consists of three main java classes: file 
loader, data validator, and cluster processor. The file loader 
helps user upload gene clusters with memberships, p-values, 
and classificat ions of genes in a chosen functional category. 
The validator verifies the uploaded fuzzy clusters, pathways 
or GO annotations acquired from remote databases. Once all 
files are uploaded successfully, the application issues a 
confirmat ion batch id. This batch id can  be used to reference 
uploaded clusters for future use. 

Data validator uses an XML parser and a remote reader 
object (RRO). The XML parser is implemented to process the 
System Bio logy Markup Language (SBML), an XML-based, 
mach ine readable markup language for representing models 
of biological processes [14]. The RRO init iates an ftp 
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connection with a remote bioinformat ics database server, 
retrieves information from the server, and stores the 
informat ion locally. With  the RRO, software may routinely 
check with the database servers for updates. A widely 
accessed bioinformat ics database is KEGG [15], whose 
pathway database provides a collection of metabolic pathway 
annotations. The pathway network is a way of describing 
biological interactions and the interacting compounds. Its 
database is accessed using RRO. 

B. Visualizing Fuzzy Clusters 
To work with a fuzzy clustering algorithm, the cluster 

processor is implemented to help user to select fuzzy 
cluster(s) and to visualize them. Its Web interface lists 
multip le fuzzy clusters for user to choose from and to set the 
threshold values for fuzzy memberships and p-values. Once a 
fuzzy cluster is selected, all genes with  memberships greater 
than and gene clusters with p-values less than user entered 
thresholds are processed (Fig. 2). The Web interface lists the 
genes in a chosen cluster, and all pathways being enriched by 
the cluster. 

Each fuzzy cluster is processed by two java objects, 
TablularForm and NetworkDrawer. The former is used to 
manage fuzzy clusters of genes with enriched pathways. Each 
gene in it  is associated with a set of functional categories 
according to KEGG’s or GO’s annotations. The 
NetworkDrawer class draws the pathway networks and 
annotates fuzzy clusters to them. Information needed for 
redrawing a pathway network is obtained from the KEGG 
database server. They are described in the KEGG Markup 
Language (KGML), a data exchange format used by KEGG's 
pathway graph objects. KGML makes automatic redraw of 
KEGG pathways possible and provides interfaces for 
modeling protein networks. A typical KGML file contains 
specifications of graph objects, where entry elements are 
treated as nodes and relations and reaction elements as edges. 
When a network is redrawn, the fuzzy cluster processor 
passes a list of genes to the applet and displays them on 
pathways.  

C. Software Validation 
Before the workflow is applied to RNA expression, we 

compared our software to a pathway network analysis tool 
MetaCore (http://www.genego.com). We randomly picked 
several fuzzy  clusters to examine by setting the thresholds to 

0.8 for fuzzy membership and 0.01 fo r the p-value. For 
instance, one of the genes being grouped into the cluster is 
PAPSS2 with the membership > 0.9. Two pathways are 
enriched by the cluster of gene PAPSS2, namely the Purine 
Metabolism pathway and the Sulfur Metabolism pathway. 
The pathway analysis on MetaCore confirmed  our results. 
Although it is inclusive, our software implementation 
provides a means to relate fuzzy clusters to biological 
pathway networks. User may choose a specific pathway to 
explore and redraw the pathway. In addit ion, it allows a user 
to drag nodes on pathways to arrange a better view of a 
pathway (Fig. 3). The init ial version of the software is 
available at http://cs.winona.edu/fuzzygenes. 

IV. ANALYSIS OF LUNG CANCER RNA EXPRESSION 
Lung cancer is a heterogeneous disease resulting from the 

acquisition of mult iple somatic mutations. Its heterogeneity 
calls for a fuzzy clustering method. 

A. Gene Expression 
The RNA was ext racted from a total of 190 never-smoker 

lung cancer patients, from both normal and cancer tissues. 
Eighty of them are adenocarcinoma, and thirty five are 
carcinoid typical. For Mayo Clinic discovery set, patients 
with lung cancer who were classified as never s mokers were 

 
 

Fig. 3. The redrawn of pathway network enriched by a fuzzy cluster. 

 
 

Fig. 2. Pathways enrichment by fuzzy clustering and gene-pathway relationship revelation 
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identified and recruited between January, 1997, and 
September, 2008. Never smokers were defined as individuals 
who had smoked less than 100 cigarettes during their lifetime. 
A detailed explanation of the recruitment process has been 
reported previously in [16]. 

Illumina Human W G DASL beadchip (Illumina, Inc, San  
Diego, CA, USA) was used for gene expression profiling. 
The expression data consisted of transcript levels for 24526 
microarray probes, representing 18626 unique genes. 
Samples that passed quality control were merged and 
normalized together by use of the R faster cyclic loess 
function (Fastlo) [17]. 

B. Classifications of Lung Cancer Cell Types 
A correlation-based FCM algorithm is chosen; a validity 

measure fWCSS was computed to determine appropriate 
number of clusters [7]. A close examination of fWCSS index 
revealed 40 potential clusters within the data set, and the 
dataset is thus segmented into 40 clusters. Fuzzy clusters of 
genes are input to the software implementation of the 
workflow. Pathway informat ion was obtained from the 
KEGG database. There are 1,923 relat ionships found between 
the genes and the pathways. Each fuzzy cluster is processed if 
it significantly enriches a pathway (p-value<0.005). Within 
each cluster, only genes with fuzzy membership � � ��� are 
considered. 

 After all fuzzy  clusters processed, genes are ranked  by 
number of pathways they enrich. The top 50 genes are 
selected. Gene is excluded from further analysis if more than 
80% of pathways it enriches are already covered by genes 
ahead in the list. We were able to identify 27 genes out of five 
fuzzy clusters enriching total of 44 pathways. A new feature 
is computed for each cluster C and sample tissue j as 

� 
 � 


 ��
i iCi ijiCjC pfeature �� /        (2) 

Where, � � � is membership of ith gene to Cth cluster, and pij is 
gene expression of sample tissue j. By projecting labeled 
samples to feature space with new features, we were able to 
identify boundaries between adenocarcino, carcinoid typical 
and the rest of cell types. Overall, we correctly classified 93% 
of adenocarcinoma and 83% of carcinoid typical cell types. 

V. DISCUSSION 
In this paper, we present a workflow to associate fuzzy  

clusters with pathways, and discuss a software 
implementation for unveiling the associations between 
clusters or genes and pathways. To demonstrate the use of the 
workflow, a software tool has been implemented and applied 
to classify cell types of lung cancer samples. Clustering 
methods are intended for exp loration purposes. One may 
apply the methods to clustering an un-annotated gene and 
associate it to a functional category. This software provides a 
means to do so. The same workflow could be applied to GO 
categories with minor modification to the software. The 
significance of functional enrichment is calculated by 

comparing genes in a cluster to its GO or pathway 
annotations. If a gene is un-annotated, we would include this 
gene with annotated genes in a clustering process and restrict 
the number of un-annotated genes to be small. To work with a 
large number of un-annotated genes, one should break them 
into subsets and work with one subset at a time. Otherwise, 
statistical power of clustering results would be affected and so 
are the p-values. As a result, one may never discover any 
associations between the genes under study and the existing 
functional categories. 
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