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Gene Expression Analysis with Integrated Fuzzy C-means and
Pathway Analysis
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Abstract—A workflow for associating fuzzy dusters to
biological pathways has been implemented as a Java-based
software tool. Its software implementation is comprised of a
correlation-based fuzzy c-means algorithm and an enrichment
test on Kyoto Encyclopedia of Genes and Genomes’ pathways.
We applied this workflow to gene expression in classification of
lung cancer cell types and achieved satisfactory results. The
software could aid in the validation of results of fuzzy clustering
algorithms and the exploration of un-annotated associations
between genes and gene ontology categories.

[. INTRODUCTION

HE study of human genome involves a tremendous

amount of data, and clustering methods are often used to
explore the patterns within. Clustering algorithms are
classified into crisp or fuzzy methods. Researchers have
shown that most of the commonly used crisp algorithms were
unable to identify genes whose expression is similar to
mu ltip le, distinct gene groups. Though crisp algorithms failed
to mask the relationships between genes that are co-regulated
with different groups of genes, fuzzy clustering method was
able to identify those relationships[1].

In clustering microarray data, a fuzzy clustering algorithm
assigns a gene with degrees of memberships to multiple
clusters. The membership is a value between 0 and 1 with one
indicating a complete association to a cluster [2]. During
clustering, the algorithm minimizes an objective function. A
recent study has shown that the fuzzy c-means (FCM)
algorithm with a correlation-based objective function
outperforms the algorithm with Euclidean distance metrics
[3]

Biologists use different databases to store and for sharing
biological information. In addition to millions of scientific
publications, these databases provide descriptive genomics,
gene annotations, and simulation of biological data.
Constantly updated and verified, most of them have Web
interfaces to facilitate user’s research [4, 5]. Among the
information are the gene ontology (GO) and pathway
databases. The GO describes the molecular functions of gene
products and their roles in multi-step biological processes.
The database is created using existing genomic databases and
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published literatures. It is built on a set of controlled
vocabulary which describes gene and gene product attributes
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Fig. 1. Classification of cell types by integrating FCM analysis and
Pathway annotations.

in organisms. The GO categories have often been adopted in
validating the results of clustering in several studies [6, 7].
The pathway is another way to capture the roles genes play in
biochemical reactions that help sustain life. A pathway is a
sequence of enzymatic reactions by which one biological
material is converted to another [8]. Identifying genes in
biological pathways is an important instrument for early
disease detection and diagnosis.

With a fuzzy clustering method, genes are grouped
together according to a mathematic or statistical metric.
Given the fact that a gene may play roles on multiple
pathways, the numbers of genes attributed to cancer
prognosis would be abundant. However, studies have
suggested that underlining pathways could be limited and
essentially identical. We propose a workflow to integrate
fuzzy clustering and pathway analysis, and apply the
workflow to classify lung cancer cell types. The rest of the
paper is organized as follows. We introduce a workflow for
integrating fuzzy clustering and pathway analysis in Section
II. Then, we discuss a software implementation of the
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workflow in Section III, and apply it to classify cell types of
lung cancer in Section IV. We conclude in Section V.

II. INTEGRATION OF FCM AND KEGG PATHWAYS

The workflow shown in Fig. 1 illustrates a means to
associate fuzzy clusters of genes to predefined functional
categories, such as GO terms or pathways. An FCM
algorithm is applied to gene expression data to produce
cluster centroids and to assign each gene to cluster centroids
with memberships. In relating a fuzzy cluster to biological
pathways, we test the enrichment of pathways by the cluster
of genes. Clusters of genes with fuzzy memberships, p-values
of enrichment tests and gene annotations are inputs to the
visualization software developed in-house. After genes are
identified, they are used in computing new features in
classifications of cell types of lung cancer.

TABLE . TABULAR FORMOF FUZZY MEMBERSHIPS

Gene symbol Cluster 1 Cluster 2 Cluster 3
PAPSS2 0.089 028 0.631
SULT1A2 0.044 038 0576
GPD1 0.69 0.134 0.176

A. Fuzzy C-means Algorithm

Studies have shown that fuzzy clustering methods are
capable of identifying genes whose expression is similar to
multiple, distinct gene groups [6]. When it is used, a fuzzy
clustering algorithm assigns genes to a given number of
clusters such that each gene may belong to more than one
cluster with different degrees of memberships [2]. Outputs
from fuzzy clustering include matrices of memberships
(Table I) and cluster centroids. For example, gene PAPSS2
belongs to Cluster 2 by membership 0.28 and to Cluster 3 by
0.631. A fuzzy membership is a value between 0 and 1 with
one indicating a comp lete association to a cluster. A gene has
a total membership value of 1.0 across the clusters.

TABLE II. PATHWAY ENRICHMENT OF FUZZY CLUSTERS

Cxk Functional Cate gory nk my p-Value
6 Cell cycle process 206 30 8.61E-08
Cell cycle 36 8.38E-10
Cellular metabolic process 139 239E-17
28  Defense response 120 27 1.13E-12
Immune response 43 4.52E-25
Response to external stimulus 26 9.38E-11
31 Immune response 77 16 2 .35E-06

B. Enrichment Test

Genes are classified by GO terms or pathway annotations.
In GO, annotation terms are organized into biological
process, molecular function and the cellular component
categories. In Kyoto Encyclopedia of Genes and Genomes
(KEGQG), they are mapped to pathways. Enrichment test is
done assuming a hypergeometric probability distribution of
genes within a cluster. Hypergeometric probability
distribution can be used to compute a probability that an
observed enrichment of a functional category comes from

randomly selected genes [9]. The significance (p-value) of
enrichment is defined as:

p-value = [%[A/l[k J[N;; __Aj" j] []ij (1)
i=my k k

Here Ny and ny are the numbers of genes in fuzzy cluster k
before and after membership threshold, respectively; and My
and my are the numbers of genes in the cluster assigned to a
functional category before and after membership threshold,
respectively.

Examples of p-values computed using GO biological
processes are given in Table II. It is worth of noting that a
cluster may enrich multiple pathways, e.g., Cluster 6
significantly enriches cell cycle, cell cycle, and cellular
metabolic process pathways.

III. SOFTWARE IMPLEMENT ATION

Graph-based methods are often used in visualizing cluster
structures and their relationship. They include heatmaps,
neighborhood graphs and scatter plots [6, 10, 11]. Though
results of hierarchical clustering are best presented as trees,
ie., dendrograms, results of centroid-based clustering is
commonly projected into 2-D space like scatter plots [12].
With scatter plots, one may visualize the clustered data in
different colors and with annotations to represent the cluster
membership.

The workflow is implemented as a Java applet with
Web-based user interfaces. Java Servlets and Apache Derby
are used to build, store data to and query biological data from
local and remote servers. To speed up the data analysis, the
GO databases are downloaded from the GO consortium [4]
and stored locally. The software accesses the remote KEGG
database [13] to acquire its pathway networks.

A. Remote Access to Sources of Annotations

Our software imp lementation takes in three datasets: gene
clusters with fuzzy memberships, gene annotations that
reveal the relationships between genes and functional
categories (e.g. pathways, biological processes), and the
p-values of enrichment tests. These datasets are modeled with
three entity sets, Cluster Membership Values, Pathway
Information, and Cluster p-value in our database.

The software consists of three main java classes: file
loader, data validator, and cluster processor. The file loader
helps user upload gene clusters with memberships, p-values,
and classifications of genes in a chosen functional category.
The validator verifies the uploaded fuzzy clusters, pathways
or GO annotations acquired from remote databases. Once all
files are uploaded successfully, the application issues a
confirmation batch id. This batch id can be used to reference
uploaded clusters for future use.

Data validator uses an XML parser and a remote reader
object (RRO). The XM L parser is imp lemented to process the
System Biology Markup Language (SBML), an XM L-based,
machine readable markup language for representing models
of biological processes [14]. The RRO initiates an fip
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Fig. 2. Pathways enrichment by fuzzy clustering and gene-pathway relationship revelation

connection with a remote bioinformatics database server,
retriecves information from the server, and stores the
information locally. With the RRO, software may routinely
check with the database servers for updates. A widely
accessed bioinformatics database is KEGG [15], whose
pathway database provides a collection of metabolic pathway
annotations. The pathway network is a way of describing
biological interactions and the interacting compounds. Its
database is accessed using RRO.

B. Visualizing Fuzzy Clusters

To work with a fuzzy clustering algorithm, the cluster
processor is implemented to help user to select fuzzy
cluster(s) and to visualize them. Its Web interface lists
multiple fuzzy clusters for user to choose from and to set the
threshold values for fuzzy memberships and p-values. Once a
fuzzy cluster is selected, all genes with memberships greater
than and gene clusters with p-values less than user entered
thresholds are processed (Fig. 2). The Web interface lists the
genes in a chosen cluster, and all pathways being enriched by
the cluster.

Each fuzzy cluster is processed by two java objects,
TablularForm and NetworkDrawer. The former is used to
manage fuzzy clusters of genes with enriched pathways. Each
gene in it is associated with a set of functional categories
according to KEGG’s or GO’s annotations. The
NetworkDrawer class draws the pathway networks and
annotates fuzzy clusters to them. Information needed for
redrawing a pathway network is obtained from the KEGG
database server. They are described in the KEGG Markup
Language (KGML), a data exchange format used by KEGG's
pathway graph objects. KGML makes automatic redraw of
KEGG pathways possible and provides interfaces for
modeling protein networks. A typical KGML file contains
specifications of graph objects, where entry elements are
treated as nodes and relations and reaction elements as edges.
When a network is redrawn, the fuzzy cluster processor
passes a list of genes to the applet and displays them on
pathways.

C. Software Validation

Before the workflow is applied to RNA expression, we
compared our software to a pathway network analysis tool
MetaCore (http://www.genego.com). We randomly picked
several fuzzy clusters to examine by setting the thresholds to

0.8 for fuzzy membership and 0.01 for the p-value. For
instance, one of the genes being grouped into the cluster is
PAPSS2 with the membership > 0.9. Two pathways are
enriched by the cluster of gene PAPSS2, namely the Purine
Metabolism pathway and the Sulfur Metabolism pathway.
The pathway analysis on MetaCore confirmed our results.
Although it is inclusive, our software implementation
provides a means to relate fuzzy clusters to biological
pathway networks. User may choose a specific pathway to
explore and redraw the pathway. In addition, it allows a user
to drag nodes on pathways to arrange a better view of a
pathway (Fig. 3). The initial version of the software is
available at http://cs.winona.edu/fuzzygenes.
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Fig. 3. The redrawn of pathway network enriched by a fuzzy cluster.

IV. ANALYSIS OF LUNG CANCER RNA EXPRESSION

Lung cancer is a heterogeneous disease resulting from the
acquisition of multiple somatic mutations. Its heterogeneity
calls for a fuzzy clustering method.

A. Gene Expression

The RNA was extracted from a total of 190 never-smoker
lung cancer patients, from both normal and cancer tissues.
Eighty of them are adenocarcinoma, and thirty five are
carcinoid typical. For Mayo Clinic discovery set, patients
with lung cancer who were classified as never s mokers were
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identified and recruited between January, 1997, and
September, 2008. Never smokers were defined as individuals
who had smoked less than 100 cigarettes during their lifetime.
A detailed explanation of the recruitment process has been
reported previously in [16].

Illumina Human W G DASL beadchip (Illumina, Inc, San
Diego, CA, USA) was used for gene expression profiling.
The expression data consisted of transcript levels for 24526
microarray probes, representing 18626 unique genes.
Samples that passed quality control were merged and
normalized together by use of the R faster cyclic loess
function (Fastlo) [17].

B. Classifications of Lung Cancer Cell Types

A correlation-based FCM algorithm is chosen; a validity
measure fWCSS was computed to determine appropriate
number of clusters [7]. A close examination of fWCSS index
revealed 40 potential clusters within the data set, and the
dataset is thus segmented into 40 clusters. Fuzzy clusters of
genes are input to the software implementation of the
workflow. Pathway information was obtained from the
KEGGdatabase. There are 1,923 relationships found between
the genes and the pathways. Each fuzzy cluster is processed if
it significantly enriches a pathway (p-value<0.005). Within
each cluster, only genes with fuzzy membership /7 >0.2 are
considered.

After all fuzzy clusters processed, genes are ranked by
number of pathways they enrich. The top 50 genes are
selected. Gene is excluded from further analysis if more than
80% of pathways it enriches are already covered by genes
ahead in the list. We were able to identify 27 genes out of five
fuzzy clusters enriching total of 44 pathways. A new feature
is computed for each cluster C and sample tissue j as

feature . = @i Hic % Py )/ (Zi ,ul.c) )

Where, /7, cis membership of i’ gene to C"” cluster, and p;; is
gene expression of sample tissue j. By projecting labeled
samples to feature space with new features, we were able to
identify boundaries between adenocarcino, carcinoid typical
and the rest of cell types. Overall, we correctly classified 93%
of adenocarcinoma and 83% of carcinoid typical cell types.

V. DISCUSSION

In this paper, we present a workflow to associate fuzzy
clusters with pathways, and discuss a software
implementation for unveiling the associations between
clusters or genes and pathways. To demonstrate the use of the
workflow, a software tool has been implemented and applied
to classify cell types of lung cancer samples. Clustering
methods are intended for exploration purposes. One may
apply the methods to clustering an un-annotated gene and
associate it to a functional category. This software provides a
means to do so. The same workflow could be applied to GO
categories with minor modification to the software. The
significance of functional enrichment is calculated by

comparing genes in a cluster to its GO or pathway
annotations. If a gene is un-annotated, we would include this
gene with annotated genes in a clustering process and restrict
the number of un-annotated genes to be small. To work with a
large number of un-annotated genes, one should break them
into subsets and work with one subset at a time. Otherwise,
statistical power of clustering results would be affected and so
are the p-values. As a result, one may never discover any
associations between the genes under study and the existing
functional categories.
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