
A General CellML Simulation Code Generator using ODE Solving

Scheme Description

Akira AMANO, Naoki SOEJIMA, Takao SHIMAYOSHI, Hiroaki KUWABARA, Yoshitoshi KUNIEDA

Abstract— To cope with the complexity of the biological
function simulation models, model representation with de-
scription language is becoming popular. However, simulation
software itself becomes complex in these environment, thus, it
is difficult to modify target computation resources or numerical
calculation methods or simulation conditions. Typical biological
function simulation software consists of 1) model equation, 2)
boundary conditions and 3) ODE solving scheme. Introduc-
ing the description model file such as CellML is useful for
generalizing the first point and partly second point, however,
third point is difficult to handle. We introduce a simulation
software generation system which use markup language based
description of ODE solving scheme together with cell model
description file. By using this software, we can easily generate
biological simulation program code with different ODE solving
schemes. To show the efficiency of our system, experimental
results of several simulation models with different ODE scheme
and different computation resources are shown.

I. INTRODUCTION

Experiments of many physical phenomena are now con-

ducted using computer simulation. Biological functions or

system are also being examined by simulations, however,

biological function simulations are different from others in

the sense of model complexity. This feature results in com-

plex simulation program which are very difficult to maintain,

modify and expand. One method of coping with the model

complexity is to use some markup language based model

descriptions. One of the most famous modeling language

is CellML [2] which is intended to be used for describing

cellular function models. Many models are already provided

by the CellML repository [1]. To use CellML models, sim-

ulation softwares which can handle these files are necessary

[4][5].

A typical simulation program of cellular or biological

function model consists of three parts: one is model equation

itself, second is boundary conditions, and third is ODE solv-

ing scheme such as Euler method or Runge-Kutta method. In

some case, researchers want to evaluate more sophisticated

ODE solving scheme for speedup or stabilizing the numerical

calculation. In other case, researchers want to use parallel

computation resources for large scale simulations. In another

case, coupling simulation between different phenomena such

as structural mechanics or fluid dynamics together with

cellular electrophysiology are necessary. In all of these cases,

A. Amano is with Department of Bioinformatics, Ritsumeikan Uni-
verisity, Shiga-ken, 525-8577, Japan (phone:+81-77-561-2584; e-mail:a-
amano@fc.ritsumei.ac.jp)

N. SOEJIMA, H. KUWABARA, Y. KUNIEDA is with Department of
Informatics, Ritsumeikan Univerisity, Shiga-ken, 525-8577, Japan)

T. Shimayoshi is with ASTEM RI, Kyoto, 600-8813, Japan

Fig. 1. Inputs and outputs of proposed system.

special knowledge and programming skills are necessary to

construct or modify simulation programs even if the original

software can handle CellML files.

To cope with this problem, we designed a system which

can automatically generate complex simulation program for

special computation resources by using cell model written by

CellML, and ODE solving scheme written by a description

language.

II. GENERAL PURPOSE SIMULATION CODE GENERATOR

A. Simulation Code Generation

In our system, cell model is provided by a CellML[2] file.

We designed a description language called TecML (Time

Evolution Calculation Markup Language) to describe ODE

solving schemes, and a TecML file is also provided to

the system. Since the type of each variable in cell model

changes according to the experimental protocol, the variable

type information is also necessary for the simulation. This

information should be written in a experimental protocol

description, however, the design of the experimental protocol

description is still under research in our system. Therefore,

we designed a simple description language RelML (Relation

Markup Language) which describes the relation between a

CellML file and a TecML file(Fig.1).

From these information, our system generates simulation

program for single CPU environment and CPU with parallel

processing device (GPGPU). Note that, some cell model

requires reordering of equations written in CellML file.

Also in some cell model, solving of linear or nonlinear

simultaneous equations are required. This happens because

a CellML file is only a static description of a cell model

and separated from the numerical calculation method. One

of the goal of our system is to automatically cope with this

problem, however, this aspect is still under research, thus

very simple equation reordering is only provided.

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 940

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

<tecml>
<inputvar name="xi" type="diffvar" />
<outputvar name="xo" type="diffvar" />
<variable name="d" type="deltatimevar" />
<variable name="t" type="timevar" />
<variable name="x1" type="diffvar" />
<variable name="y1" type="arithvar" />
<variable name="k1" type="derivativevar" />
<variable name="z" type="constvar" />
<function name="f" type="diffequ">
<argument type="diffvar" />
<argument type="timevar" />
<argument type="arithvar" />
<argument type="constvar" />

</function>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<eq/>
<ci>x1</ci>
<ci>xi</ci>

</apply>
</math>
...

</tecml>

Fig. 2. A TecML file example (part).

<relml>
<cellml filename="model/cellml/sample.cellml">
<tecml filename="model/tecml/Euler.tecml">
<variable component="environment"

name="time" type="timevar" />
<variable component="membrane"

name="V" type="diffvar" />
<variable component="membrane"

name="I_stim" type="arithvar" />
<variable component="membrane"

name="R" type="constvar" />
</relml>

Fig. 3. A RelML file example (part).

B. Description Languages

1) CellML: Cell Model Description Language: CellML

[2] is widely used as a description language of cell models.

We used a CellML file as a cell model input file.

2) TecML: Time Evolution Calculation Markup Lan-

guage: TecML is a description language which is used

to describe ODE solving scheme such as Euler method,

Modified Euler method or 4th explicit Runge-Kutta method.

In a TecML file, variables used in ODE solving scheme

equations are declared with variable type. The variable type

is one of time, delta time, differential variable, arithmetic

variable, derivative variable or constant. Also the input and

the output differential variables are declared. The name of

function which represents function to calculate derivatives

and arithmetic variables are also declared. Finally, equations

to calculate output variable from input variable are written

with mathml. An example TecML file (part) is shown in

Fig.2.

3) RelML: Relation Markup Language: RelML is a de-

scription language which is used to describe a relation

between a CellML file and a TecML file. Thus one RelML

file is necessary for each combination of a CellML and

a TecML files. In a RelML file, first filenames of both

CellML and TecML are described. All the variable names

and their types are declared. The variable type is one of

differential variable, arithmetic variable, constant and time

variable which corresponds to that of TecML. An example

of RelML file is shown in Fig.3.

TABLE I

INFORMATION WRITTEN IN CELL MODEL DESCRIPTION LANGUAGES

notation meanings

x = [x1, x2, . . . , xNx
]T differential variables

k = [k1, k2, . . . , kNx
]T derivative variables

y = [y1, y2, . . . , yNy
]T arithmetic variables

z = [z1, z2, . . . , zNz
]T constants

t time
f(x, y, t, z) = [f1(x, y, t, z), f2(x, y, t, z), equations with

. . . , fNx
(x, y, t, z)]T k in LHS

g(x, y, t, z) = [g1(x, y, t, z), g2(x, y, t, z), equations with

. . . , gNy
(x, y, t, z)]T y in LHS

III. CODE GENERATION ALGORITHM

A. Cell Model Description

Information written in a cell model file can be summarized

as shown in Table I.

Let a cell model be written as follows,
{

k = ẋ = f(x, y, t, z)
y = g(x, y, t, z)

(1)

where, 〈˙〉 denotes differentials by t (d/dt). Here, we denote

x as differential variable vector, y as arithmetic variable

vector. z is constant vector and t denotes time. Variables

x,y,z can be denoted as follow.

x = [x1, x2, . . . , xNx
]T (2)

y = [y1, y2, . . . , yNy
]T (3)

z = [z1, z2, . . . , zNz
]T (4)

f(x, y, t, z) is a function vector whose LHS’s are ẋ where

ẋi = fi(x, y, t, z).

f(x, y, t, z) = [f1(x, y, t, z), f2(x, y, t, z), . . . , fNx
(x, y, t, z)]T

(5)

g(x, y, t, z) is a function vector whose LHS’s are y where

yi = gi(x, y, t, z).

g(x, y, t, z) = [g1(x, y, t, z), g2(x, y, t, z), . . . , gNy
(x, y, t, z)]T

(6)

B. ODE solving scheme description

Information written in a TecML file can be summarized

as shown in Table II.

Let differential equations of a cell model be denoted by

dξ/dt = Φ(ξ, ι, t), ι = Γ(ξ, ι, t). The relation between the

differential variable value ξ0 (time t) and ξNξ
(time t + δ in

a TecML file can be denoted as follow.

ξi = σi(Ξ, K, δ) (1 ≤ i ≤ Nξ) (7)

κi = Φ(ξi−1, ιi−1, τi−1) (1 ≤ i ≤ Nξ) (8)

ιi = Γ(ξi, ι, τi) (0 ≤ i ≤ Nξ) (9)

τi = Ti(t, δ) (0 ≤ i ≤ Nξ)

where,

Ξ = [ξ0 ξ1 . . . ξNξ
]T (10)

K = [κ1 κ2 . . . κNξ
]T . (11)

941

TABLE II

INFORMATION WRITTEN IN TIME EVOLUTION CALCULATION ML

notation meanings

ξ0 current differential variable vector
ξNξ

output differential variable vector

t variable for time
δ variable for time step
ζ constant
ξi (1 ≤ i ≤ Nξ) temporal differential variable vector
κi = Φ(ξi−1, ιi−1, τi−1) vector variable for

(1 ≤ i ≤ Nξ) derivative variables
ιi = Γ(ξi, ι, τi) (0 ≤ i ≤ Nξ) temporal variable from ξ
τi = Ti(t, δ) (1 ≤ i ≤ Nξ) temporal variables for time

Ξ = [ξ0, ξ1, . . . , ξNξ
]T vector for ξ

K = [κ1, κ2, . . . , κNξ
]T vector for κ

σi(Ξ, K, δ) relation between ξi and Ξ, K , δ

TABLE III

INFORMATION WRITTEN IN RELML FILE

relation meanings

ξk = [ξk,1, ξk,2, . . . , ξk,Nκ
]T differential

⇔ x = [x1, x2, . . . , xNx
]T variable vector

κk = [κk,1, κk,2, . . . , κk,Nκ
]T differential

⇔ k = [k1, k2, . . . , kNx
]T derivative vector

ιk ⇔ y = [y1, y2, . . . , yNy
]T temporal variable vector

dξ/dt = Φ(ξ, ι, t) ⇔ ẋ = f(x, y, t, z) differential equation
ι = Γ(ξ, ι, t) ⇔ y = g(x, y, t, z) arithmetic equation

C. Description of relation between cell model information

and tecml information

The relation between the information of a cell model and

a tecml scheme are described in a RelML file which are

summarized in Table III.
The elements of differential variables in TecML are iden-

tical to those of cell model, therefore, there exist correspond-

ing variable x for each ξ.

ξk = xk = [xk,1, xk,2, . . . , xk,Nx
]T (12)

The elements of derivative variables κ in a TecML file has

corresponding derivative variables ẋ in a cell model.

κk = ẋk = [ẋk,1, ẋk,2, . . . , ẋk,Nx
]T (13)

The elements of arithmetic variable ι in a TecML file has

corresponding arithmetic variables y in a cell model.

ιk = yk = [yk,1, yk,2, . . . , yk,Ny
]T (14)

The actual calculation equations dξ/dt = Φ(ξ, ι, t), ι =
Γ(ξ, ι, t) in a TecML file correspond to the model equations

f , g in cell model.

φk(ξ, ι, τ) = fk(x, y, t, z)|x=ξ,y=ι,t=τ (15)

γk(ξ, ι, τ) = gk(x, y, t, z)|x=ξ,y=ι,t=τ (16)

D. Algorithm

By using the information written in a cell model file, a

TecML file and a RelML file, simulation program can be

generated by the algorithm shown in Fig.4.
Note that, the subroutine replace v() replaces variables in

the TecML equation with program variables, replace sj() gen-

erates one scalar equation from vector equation, replace d()

generate equations() {
string equation set[] = all equations in TecML ;
string equation set2[] = null ;
int equ2 count = 0 ;
for (i ∈ 1 . . . number of equations in equation set)) {

equation set[i] = replace v(equation set[i]);
if (equation set[i] includes f) {

for (j ∈ (1 . . . Nx))
equation set2[equ2 count++] = replace sj(equation set[i], j);

} else if (equation set[i] includes g) {
for (j ∈ (1 . . . Ny))

equation set2[equ2 count++] = replace sj(equation set[i], j);
} else {

for (j ∈ (1 . . . Nx))
equation set2[equ2 count++] = replace d(equation set[i], j);

}
}
for (i ∈ (1 . . . number of equations in equation set2)){

if (equation set2[i] includes f) {
for (j ∈ (1 . . . Nx))

equation set2[i] = replace f(equation set2[i], j);
} else if (equation set2[i] includes g) {

for (j ∈ (1 . . . Ny))
equation set2[i] = replace g(equation set2[i], j);

}
}
output all equation set2;

}
replace v(string equ) {

for (i ∈ (0..Nξ)) {
replace all ξi with xi in equ;
replace all κi with ki in equ;
replace all ιi with yi in equ;

}
replace all τ with t in equ;
replace all δ with d in equ;
replace all ζ with z in equ;
return equ;

}
replace sj(string equ, j) {

string lhs = left hand side of equ;
string rhs = right hand side of equ;
replace all ki with ki,j in lhs;
replace all yi with yi,j in lhs;
replace all Φ with φj in rhs;
replace all Γ with γj in rhs;
equ = lhs + ”=” + rhs;
return equ;

}
replace d(string equ, j) {

replace all xi with xi,j in equ;
replace all ki with ki,j in equ;
equ = lhs + ”=” + rhs;
return equ;

}
replace f(string equ, j) {

string lhs = left hand side of equ;
string rhs = right hand side of equ;
replace φj(xk, yl, t) with fj(x, y, t, z) in rhs;
for (i ∈ (0..Nx))

replace all xi with xk,i in rhs;
for (i ∈ (0..Ny))

replace all yi with yl,i in rhs;
equ = lhs + ”=” + rhs;
return equ;

}
replace g(string equ, j) {

string lhs = left hand side of equ;
string rhs = right hand side of equ;
replace γj(xk, yl, t) with gj(x, y, t, z) in rhs;
for (i ∈ (0..Nx))

replace all xi with xk,i in rhs;
for (i ∈ (0..Ny))

replace all yi with yl,i in rhs;
equ = lhs + ”=” + rhs;
return equ;

}

Fig. 4. Code Generation Algorithm

942

cell model
$r = ($x * $x * $x)
(d$x / (d$t)) = ($c * (($x - ($r / 3.0)) + $y + $z))
(d$y / (d$t)) = ((($a - $x) - ($b * $y)) / $c)

Fig. 5. cell model example

variable definition
differential variables : { &xi , &x1, &xo }
derivative variables : { &k1 , &k2 }
arithmetic variables : { &y1 , &y2 }
constant : { &z }

equation definition

&y1 = g (&xi , &t , &y1 , &z)
&k1 = f (&xi , &t , &y1 , &z)
&x1 = &xi + (&k1 * &d)
&y2 = g (&x1 , &t , &y2 , &z)
&k2 = f (&x1 , &t , &y2 , &z)
&xo = &xi + ((&d / 2) * (&k1 + &k2))

Fig. 6. TecML example (Euler)

generates multiple scalar equations from vector equation

which do not contain function f or g, replace f() unfolds

function f and replace g() unfolds function g.

By providing the cell model (Fig.5), ODE solving scheme

with TecML (Fig.6) and relation between them with RelML

(Fig.7), the algorithm could successfully generate ODE solv-

ing program as shown in Fig.8.

IV. EXPERIMENTAL RESULTS

A. Conditions

We used Kyoto model [3] for the experiments. The model

is a cardiac cell model of small mammalian, and can calcu-

late action potential and ion concentrations by ODEs.

Calculation program of 1) single cell model, 2) multi cell

model with no intercellular interaction and 3) multi cell

model with excitation propagation calculation were gener-

ated by using a) Euler method, b) Modified Euler method and

c) 4th order explicit Runge-Kutta method. Double precision

variables were used for the differential variables. In each

experiment, cell model was calculated for 400 [msec] with

time step of 0.01 [msec] unless noted. Resulting membrane

potential was recorded with interval 1.0 [msec]. Computa-

tional resources are summarized in Table IV.

cell model variable definition
differential variables : { $x , $y}
arithmetic variables : { $r}
constants : { $a , $b , $c , $z}

Fig. 7. RelML example

y1[0] = (xi[0] ∗ xi[0] ∗ xi[0])
k1[0] = (z[2] ∗ ((xi[0] − (y1[0]/3.0))+ xi[1] + z[3]))
k1[1] = (((z[0] − xi[0]) − (z[1] ∗ xi[1]))/z[2])
x1[0] = xi[0] + (k1[0] ∗ d)
x1[1] = xi[1] + (k1[1] ∗ d)
y2[0] = (x1[0] ∗ x1[0] ∗ x1[0])
k2[0] = (z[2] ∗ ((x1[0] − (y2[0]/3.0))+ x1[1] + z[3]))
k2[1] = (((z[0] − x1[0]) − (z[1] ∗ x1[1]))/z[2])
xo[0] = (xi[0] + ((d/2) ∗ (k1[0] + k2[0])))
xo[1] = (xi[1] + ((d/2) ∗ (k1[1] + k2[1])))

Fig. 8. Output of the algorithm with information of Fig.5,Fig.6, Fig.7

TABLE IV

COMPUTATIONAL RESOURCES

Host CPU Core i7 930 2.80GHz
Main Memory 6GB

Device GPU Tesla C2050
VRAM 3GB

Fig. 9. Action Potential of Kyoto Model

B. Single Cell Model

The number of equations to calculate time evolution and

the size of transfer data are summarized in Table V.

TABLE V

NUMBER OF EQUATIONS AND SIZE OF TRANSFER DATA

ODE number of size of
scheme equations data transfer(Byte)
Euler 336 296

Runge-Kutta 1010 296

Resulting action potential is shown in Fig.9 which is

identical to the figure in the original Kyoto model paper [3].

Next, numerical calculation error was evaluated for the

ODE solving scheme of 1st order Euler method, 2nd order

Modified Euler method and 4th order explicit Runge-Kutta

method by using Kyoto model. Note that the numerical

calculation results using high precision math library was used

as the ground truth. The relative error were evaluated for time

step 0.01 – 0.0001 [msec] which are shown in Fig.10.

 10
Euler

Runge-Kutta 10

 10

 10

 10
 10 10 10

time step [msec]

re
la

ti
ve

 e
rr

o
r

Fig. 10. Calculation Errors of Euler, Modified Euler and Runge Kutta
methods for Kyoto Model

943

computation time [sec] ratio (GPGPU:single CPU)

GPGPU

single CPU

ratio (GPGPU:CPU)

number of cell

Fig. 11. Computation time for multi cell model with single CPU and
GPGPU.

C. Multi Cell Model

Multi cell model was used for evaluating the acceleration

by GPGPU. In this experiment, 4th order explicit Runge-

Kutta method was used for ODE solving scheme. The num-

ber of cells were 10240 to 204800. Resulting computation

times are shown in Fig.11.
We can find that the ratio between the GPGPU computa-

tion time and the single CPU converge to a value which was

about 66 in this case. This value changes according to the

simulation code or computation resources. Note that about

60% of the computation time was used for data transfer

between the GPGPU memory and CPU memory and less

than 40% of the computation time was used for the ODE

calculation.

D. Excitation Propagation Calculation Model

In the multi cell model, data reference between different

cells do not happen, however, in the typical parallel calcula-

tion, data reference among large data occurs which results in

low calculation speed. To evaluate this aspect, we modified

the multi cell model to calculate excitation propagation of

single cardiac cell fiber. Since the description and code

generation of field related phenomena is still in progress in

our project, we manually introduced the code to the multi

cell model program code.
The resulting computation time with multi cell model

computation times are shown in Fig.12. In this case, the

difference between the computation time of both model was

very small. This is because all the model variables were

stored in the GPGPU memory in this case.

V. CONCLUSIONS

We proposed a biological function simulation program

code generator using model description file together with

ODE solving scheme description file. By using this system,

we can easily generate simulation program with complex

ODE solving scheme and also compare several ODE solving

schemes. By preparing a parallel code generator for this

system, we also can easily generate simulation code for

parallel processing environments such as GPGPU.

computation time [sec]

number of cell

ratio (multi cell : excit. prop.)

multi cell

excitation propagation

ratio (multi cell:excit. prop.)

Fig. 12. Calculation time of multi cell model and multi cell excitation
propagation model

The system will be publicly available in our project

website.

REFERENCES

[1] Cellml model repository. http://models.cellml.org/cellml.
[2] Cuellar AA, Lloyd CM, Nielsen PF, Bullivant DP, Nickerson DP, and

Hunter PJ. An overview of cellml 1.1, a biological model description
language. SIMULATION, 79(12):740–747, 2003.

[3] Satoshi Matsuoka, Nobuaki Sarai, Shinobu Kuratomi, Kyoichi Ono, and
Akinori Noma. Role of individual ionic current systems in ventricular
cells hypothesized by a model study. JJP, 53:105–123, 2003.

[4] David P. Nickerson, Alberto Corrias, and Martin L. Buist. Reference
descriptions of cellular electrophysiology models. Bioinformatics,
24(8):1112–1114, 2008.

[5] Missan S and McDonald TF. Cese: Cell electrophysiology simulation
environment. Appl Bioinformatics, 4(2):155–6, 2005.

944

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

