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Abstract— Predict the function of unknown proteins is one
of the principal goals in computational biology. The subcel-
lular localization of a protein allows further understanding
its structure and molecular function. Numerous prediction
techniques have been developed, usually focusing on global
information of the protein. But, predictions can be done through
the identification of functional sub-sequence patterns known as
motifs. For motifs discovery problem, many methods requires a
predefined fixed window size in advance and aligned sequences.
To confront these problems we proposed a method based on
variable length motifs characterization and detection using
the continuous wavelet transform (CWT) and a dissimilarity
space representation. For analyzing the motifs results generated
by our approach, we divide the entire dataset into training
(60%) and validation (40%). A Support Vector Machine (SVM)
classifier is used as predictor for validation set. The highest
𝑆𝑛 = 82.58% and 𝑆𝑝 = 92.86%, across 10-fold cross validation,
is obtained for endosome proteins. Average results 𝑆𝑛 = 74%
and 𝑆𝑝 = 75.58% are comparable to current state of the
art. For data sets whose identity is low (< 40%), the motifs
characterization and localization based on CWT shows a good
performance and the interpretability of the subsequences in
each subcellular localization.

Index Terms— Motifs, wavelet transform, hydrophathy scale,
subcellular localization, support vector machine.

I. INTRODUCTION

ONE of the main goals of genomic projects is to provide
reliable functional annotations for gene products. In

particular, protein subcellular localizaton provides useful
clues for revealing protein functions and for understanding
the intricate pathways that regulate biological processes at
cellular level [5]. The location of specific proteins can be
determined through experimental approaches such as the
attachment of green fluorescent protein coding sequences to
one end of the sequence encoding the protein of interest in
order to monitor its intrinsic fluorescence and subsequently
locate it within the cell [1]. However, such procedures
are expensive and highly time consuming, leading to the
development of computational predictors wich are able to
identify the subcellular localization of newly found proteins
based on their primary sequence information alone [4].

A vast number of predictors based on pattern recogni-
tion methods have been designed in the last few years.
Their main difference lies in the attributes they extract
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to characterize protein sequences: statistical and physical-
chemical properties of amino acids ([10],[16]), energy con-
centrations form time-frequency representations, distance
measures, word statistics, information theory and others [17].
However, most of them only describe global attributes of
the whole protein sequence, ignoring the fact that functional
domains may reside in different portions of proteins within
the same family. For instance, the same functional domain
may reside at the beginning of one protein and at the end
of another. Moreover, amino acids that have an important
role in protein function and structure cannot mutate without
an important effect on protein activity, but change very slow
in a given protein family during evolution [13]. Thus, for a
set of sequences that stretch a great evolutionary distance
it is possible to identify regions of amino acids that are
highly conserved even if they greatly differ from a global
perspective.

Such recurring patterns are called motifs and can be used to
identify representative regions of the proteins, revealing their
potential location within the cell. As an example, transmem-
brane proteins have three principal regions called cytoplas-
mic, transmembrane and extracellular domains, each one of
them constituted by amino acids with specific hydrophobic
properties that give rise to a distinctive motif. However,
common algorithms for motif identification are limited by
several restrictions such as the need for a predefined motif
size or globally aligned sequences [13]. Additionally, most
of them are limited to the discovery of motifs but do not
apply this information to the prediction of protein subcellular
localization.

Regarding subcellular location prediction, few methods
have been proposed. Most of them for bacterial organisms as
PSORT I, PSORT b, proteome analyst, amino acid composi-
tion SVM based methods, CELLO and P-Classifier, See the
review [6] for details of each one of them. These methods
use local alignment, amino acid composition, signal peptides
among others global features. Plant-Ploc [5] and TestLoc
[16] are methods based on the amino acid composition and
ensemble classifiers for deducing the subellular localization
of uncharacterized proteins in plants.

In this paper, a methodology for protein subcellular lo-
calization predicton is proposed, based on the identification
of variable-length motifs by using the continuous wavelet
transform. Query proteins are mapped into these prototype
motifs resulting in a dissimilarity space in which a support
vector machine classifier is built to predict the location to
which a specific protein belong. The remainder of this paper
is organized as follows. Section II describes methods for
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Fig. 1. Prototye motif representation and dissimilarity based classification
flow diagram.

prototype motif identification and subcellular localization
prediction. Section III presents the results and performance
of the classification. Conclusions are presented in section IV.

II. MATERIALS AND METHODS

The proposed method is described in Fig. 1. First, training
proteins of each class (subcellular location) are preprocessed
to extract short sub-sequences of variable length, determined
by high energy concentrations on the scalogram. The scalo-
gram communicate the time frequency localization property
of the wavelet transform. Then, sub-sequences are clustered
to extract prototype motifs, defined as the cosensus of all
sub-sequences belonging to one cluster. The number of
prototype motifs describing a subcellular location is thus
equal to the number of clusters obtained by the clustering
algorithm. Query proteins are mapped into a dissimilarity
space comprised of alignment-score distances to prototype
motifs and a support vector machine is trained to decide
whether or not the query protein belongs to that specific
location. All experiments where carried out on a plant
(embryophyta) protein database, belonging to eight different
subcellular locations.

A. Database

The database used is comprised of 1097 sequences ex-
tracted from the public resource Uniprot [9]. Sequences
belonging to the taxonomic class embryophyta (land plants)
were selected, with at least one annotation in the Gene
Ontology Annotation (GOA) project [2]. Sequences pre-
dicted by computational tools and with no real experimental
evidence were discarded. The subcellular localization data
set is comprised of eight different locations: vacuole, perox-
isome, golgi apparatus, ribosome, nucleoplasm, endosome,
endoplasmatic reticulum and cytoplasm. The dataset does not
contain protein sequences with a sequence similarity superior
to 40% in order to avoid bias due to the presence of protein
families in the database.

B. Preprocessing

A protein can be represented as a signal in function of
its length, by substituting each amino acid by its equivalent
value of a given physico-chemical property. Let the sequence
of interest be represented as the discrete symbolic signal

𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑖, ..., 𝑥𝑛}, for 1 ≤ 𝑖 ≤ 𝑛, 𝑛 denotes
the length of the sequence and 𝑥𝑖 ∈ 𝑆, where 𝑆 =
{𝑠1, 𝑠2, ..., 𝑠𝑗 , ..., 𝑠𝑀} is the set of possible symbols and
𝐻 = {ℎ1, ℎ2, ..., ℎ𝑗 , ..., ℎ𝑀} is the set of values associated
to the physicochemical property. The relationship between
the symbolic and numeric representation is 𝐻{𝑠𝑗} = ℎ𝑗 .
Then, the discrete ”position” signal 𝑌 can be represented as
𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑖, ..., 𝑦𝑛} where 𝑦𝑖 = 𝐻{𝑥𝑖}. For proteins
the set of symbols corresponds to the number of amino acids
found in nature, in other words 𝑀 = 20.

As protein folding is driven by hydrophobic forces, the
hydropathy distribution along the protein sequence has been
recognized as a useful feature for characterizing protein
structures. In this study, the Kyte Doolittle hydropathy scale
is used. It is based on the free energy transfer of each amino
acid between organic solvent and water [12]. This scale aims
to group the amino acids into three categories: Strongly
hydrophilic, Strongly hydrophobic and Weakly hydrophilic
or weakly hydrophobic (see Fig. 2).

C. Extraction of variable length sub-sequences

With the proteins converted into numerical signals, it is
possible to treat them with statistical methods. The contin-
uous wavelet transform (CWT) allows the identification of
patterns located simultaneously in both spectral and spatial
information within the sequences. The wavelet transform was
proposed in [15] for known proteins that contain repeating
motifs.

The CWT is defined as the projection of a function or a
signal 𝑓(𝑡) onto the wavelet function:

𝑊𝑓 (𝑎, 𝑏) = (
1√∣𝑎∣ )

∞∫
−∞

𝑓(𝑡)𝜓(
𝑡− 𝑏

𝑎
)𝑑𝑡 (1a)

𝜓𝑎,𝑏(𝑡) = (
1√∣𝑎∣ )𝜓(

𝑡− 𝑏

𝑎
) (1b)

where 𝜓𝑎,𝑏(𝑡) is the basis function at a particular scale 𝑎 and
a translation 𝑏, 𝑎, 𝑏 ∈ 𝑅, 𝑎 ∕= 0.

The mother wavelet used in our experiments is the Bior6.8
because the decomposition wavelet function and scaling are
very rugged and have abrupt changes, allowing an adequate

Fig. 2. The Kyte Doolittle hydropathy scale for each one of the amino acids
and the three classifications of the amino acids. Hydrophobic amino acids
tend to be internal (with regard to the protein’s 3 dimensional shape) while
hydrophilic amino acids are more commonly found towards the protein
surface.
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representation of protein signals with high variability. For
regions with maximal concentrations of energy through the
sequence it is possible to locate the coordinate point of the
centroid in the scale-position space. Then, this point grows
in sequence position axis both towards the left and the rigth
until the value of the actual position is less than the minimal
value of the region, thus determining the number of motifs
in a sequence. This process is applied to each sequence in
the training set.

D. Prototype motifs and dissimilarity space

The Iterative Self Organizing Data Analysis Technique -
Isodata was used to cluster subsequences in order to obtain
representative motifs. The normalized score of the sequence
local alignment was used as the metric for clustering with
alignment-score distance, defined as:

𝑑(𝑥, 𝑦) = (
1− 𝑠(𝑥, 𝑦)

𝑠(𝑥, 𝑥)
) ∗ (1− 𝑠(𝑥, 𝑦)

𝑠(𝑦, 𝑦)
) (2)

where 𝑠 is the similarity between two sequences 𝑥 and 𝑦
computed by:

𝑠(𝑥, 𝑦) =

𝑙∑
𝑖=1

𝑀(𝑥(𝑖), 𝑦(𝑖)) (3)

being 𝑙 the length of the subsequences and 𝑀(𝑥(𝑖), 𝑦(𝑖)) the
value of the similarity matrix for the 𝑖−𝑡ℎ elements of 𝑥 and
𝑦. For 𝑀 , we used the Point Accepted Mutation (PAM150)
scoring matrix [18].

A prototype motif is generated for each resulting cluster
as the consensus sequence for locally aligned sub-sequences.
Given a cluster 𝐶𝑘, the consensus for this cluster is:

𝑄′
𝑘 =𝑀 ∗ 𝑃𝑘 (4a)

𝑃𝑘(𝑖, 𝑗) = log(
𝑓𝑘(𝑖, 𝑗) + 𝑘

∣𝐶𝑘∣ ) (4b)

where 𝑃𝑘 is the profile of the cluster 𝐶𝑘, 𝑓𝑘(𝑖, 𝑗) represents
the count of amino acid 𝑗 at position 𝑖 of the subsequences
in 𝐶𝑘. The consensus 𝑄𝑘(𝑖) is the indexing amino acids with
highest values on 𝑄′

𝑘 for each column.
Once the set of prototype motifs are generated, a new

sequence 𝑆 is represented as the distribution of their sub-
sequences 𝑠𝑖. The Dissimilarity Vector Construction aims to
take the minimum alignment-score distance between the set
of subsequences and a prototype motif. Each subsequence
𝑠𝑖 is compared with each consensus 𝑄𝑘. The value for the
𝑘 − 𝑡ℎ dimension of the dissimilarity space 𝐹 is set to:

𝐹 (𝑘) = min
𝑠𝑖∈𝑆

{𝑑(𝑠𝑖, 𝑄𝑘)} (5)

Conceptually, this quantity is a measure of the extent at
which the prototype motif 𝑄𝑥 is present in the sequence 𝑆.

E. SVM-based predictor

The entire database was divided into a training and a
validation set. For each class, 60% of the sequences were
selected for training and 40% for validation. The Fast
Correlation-Based Filter [19] was used for feature selection,

providing a reduced matrix 𝐹𝑟 of distances to non redundant
motifs. Since support vector machines are designed only
for two-class problems, classification was implemented fol-
lowing the one-against-all strategy. This method produces a
strong class imbalance, so Synthetic Minority Over-sampling
Technique (SMOTE) was employed to overcome it, in which
the minority class is over-sampled by creating ”synthetic”
examples rather than by over-sampling with replacement
[3]. Parameters of the SVM were tuned with a Particle
Swarm Optimization algorithm [11]. Validation of results
were obtained by 10-fold cross-validation. Sensitivity (Sn),
specificity (Sp) and geometric mean (gm) were used as
classification performance measures.

III. RESULTS AND DISCUSSION

Detection of motifs can be illustrated with the wavelet
representation shown in Fig. 3. This scalogram belongs to
the 𝐴8𝑅7𝐾9 protein of Arabidopsis thaliana, located within
the cell in the endosome and is responsible for directing the
movement of substances from endosomes to lysosomes [8].
For this protein, the wavelet representation found a total of
71 motifs. Some of these motifs were also found by the web
tools ScanProsite [7] and InterPro scan [14], demonstrating
the validity of the results:

– N-P-[ST]-P, called N-glycosylation site pattern, found
at positions 6-9, 244-247, 375-378, 444-447. In the
scalogram they all correspond to the motifs: 1, 21, 31
and 41.

– [ST]-x(2)-[DE], called Casein kinase II phosphorylation
site pattern is found in most of the known physiological
substrates. The positions are 84-87, 160-163, 444-447
and 753-756, wich correspond with the scalogram mo-
tifs 8, 16, 35 and 68.

– L-x(6)-L-x(6)-L-x(6)-L, known as the Leucine zipper
pattern, It consists of a periodic repetition of leucine
residues at every seventh position over a distance cov-
ering eight helical turns. The segments containing these
periodic arrays of leucine residues seems to exist in an
𝛼-helical conformation. The positions are 346-367 and
353-374. Given the nature of the amino acids, these
sequences are found in the union of motifs 29, 30 and
31 in the scalogram.

Prediction of protein subcellular localization was com-
pared with TESTLoc [16] and Plant-PLoc [5]. TESTLoc is to
the best of our knowledge, the closest method to ours, since

Fig. 3. Wavelet transform location of sub-sequences in an Endosome
protein
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Fig. 4. Prediction performance of subcellular localizaton in 𝐸𝑚𝑏𝑟𝑦𝑜𝑝ℎ𝑦𝑡𝑎
proteins. Left plot shows mean performance statistics, while right plot
depicts performance variation through ten repetitions.

it also perform predictions on proteins of 𝑒𝑚𝑏𝑟𝑦𝑜𝑝ℎ𝑦𝑡𝑎.
In contrast, they characterize protein sequences according
to physicochemical properties of amino acids, six differ-
ent types of amino acid composition, grouped amino acid
composition according to their properties and gapped amino
acid composition. None of these properties take into ac-
count the spatial distribution of the sequences in which the
feature space comprises high dimensionality. Additionally,
their dataset includes sequences with up to 60% of identity.
For endoplasmic reticulum, peroxisomes and vacuoles they
reported average sensitivities for all sequence feature of
20%, 40% and 63.3%, respectively. For three top-performing
features the average sensitivities were 20%, 50% and 63.3%
respectively. Whereas our average sensitivities were 70.12%,
73.78% and 71.72%. The entire results for our system
are shown in Fig. 4. Plant-PLoc is a method for protein
subcellular localization in plants. The prediction quality was
examined employing two datasets, the first for training and
the second for validation using 406 and 265 proteins, re-
specivelly. Where none of the proteins had ≤ 25% sequence
identity to any other in the same subcellular localization. The
feature mapping is given by hybridation of GO and amphip-
ilic pseudo amino acid composition and the classification
is made by the hybridation of ensemble classifiers. Plant-
PLoc report an average sensitivity of 𝑆𝑛 = 78.9% whereas
our method for the same database showed an average sen-
sitivity of 𝑆𝑛 = 76.6%. With the advantage that we found
discriminating sites (prototype motifs) for each subcellular
localization which are not found with conventional methods
for sequence alignment.

IV. CONCLUSIONS

In this paper, we proposed a characterization and lo-
calization of variable-length motifs based on continuous
wavelet transform for subcellular location problem. For a
set of related sequences, is likely to find short patterns
distribuited throughout the sequences, and the nature of
this patterns is given by its amino acid interactions. The
scalogram is a representation of these interactions, then,
for training sequences, we found a set of prototype motifs
that represented a specific subcellular location by isodata
algorithm. The endosome and ribosome proteins showed high
discriminability with regard to remaining classes. Therefore,
the results showed that the motifs characterization based

on continuous wavelet transform and the posterior dissim-
ilarity space representation allowed discrimination between
different subcellular localizations. Our method proved to be
competitiveness with respect to other developed methods in
the state of the art for data sets with a low identity.
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