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Abstract— In this effort we introduce a spline framework for
ECG waveform analysis, with initial application to the ECG
delineation (segmentation) problem. The framework comprises
knot initialization, spline interpolant, error metric, and knot
location optimization to parametrically represent the waveform
for analysis, classification, or compression. Choice of these
constituents is driven by the application of the framework.
For our initial application of ECG delineation, we use the
framework to identify characteristic points corresponding to
waveform onset and offset times, peak values, and junction
points. These are represented mathematically as critical points
and points of inflection, which serve as knot locations for linear
or cubic Hermite interpolants in the framework. Preliminary
tests on a limited but diverse set of morphologies from the
European ST-T database indicate that the framework obtains
knot locations corresponding to characteristic points, and the
resultant interpolated waveform represents the original signal
well with low mean squared error.

I. INTRODUCTION

Analysis of electrocardiogram signals, whether performed
by human expert or by machine, requires identifying key
morphological features in the waveform that correspond
to temporal sequences of depolarization and repolarization
of the myocardium. Electrical activity in specific areas of
cardiac tissue gives the ECG waveform its characteristic
shape: the P wave corresponds to atrial depolarization, the
QRS complex to ventricular depolarization, and the T wave
to ventricular repolarization. Locating and quantifying these
shapes, as well as obtaining other metrics derived from the
waveform (such as QT interval, ST segment deviation, PR
interval, etc.) provide a non-invasive view of cardiac function
for analytic or diagnostic purposes.

Due to the importance of identifying the constituent
shapes of the ECG waveform, the problem of delineating
(or segmenting) the ECG waveform is well-established in
the literature. Existing work includes use of wavelets [1]–
[3], Hidden Markov Models [4], [5], templates [6], spectral
analysis [7], mathematical morphology [8], empirical mode
decomposition [9], and model-based methods [10], [11].

Splines have also been applied to ECG signal processing,
but predominantly in the areas of waveform compression
[12]–[14] and baseline wander elimination [15], [16]. There
is very little literature exploring use of splines for detection
and tracking of waveform features using knot locations,
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Fig. 1. Spline Framework for ECG Analysis

although this was a recognized need articulated in [17].
Unlike, for example, spline signal compression (where the
interpolated waveform shape is the key factor), for ECG de-
lineation spline knot locations are of paramount importance
as they correspond to the waveform’s characteristic points.

Mathematically, we define characteristic points as the
critical points or points of inflection in the ECG waveform.
With an appropriate interpolant, these points naturally serve
as knots in a spline representation and define both temporal
and morphological features of the waveform. Complexes of
interest in the ECG waveform are demarcated or defined
by the characteristic points: P, QRS, and T onset and offset
times, J point, peak values, and various intervals of interest
can all be defined or derived from characteristic points.

With this effort we are introducing a spline-based frame-
work for ECG waveform analysis, with an initial application
to the delineation problem. With appropriate knot initializa-
tion, choice of interpolant, and knot location optimization,
the framework provides a parametric model enabling anal-
ysis, diagnosis, classification, compression, and tracking of
features in the ECG waveform.

II. METHODOLOGY

Fig. 1 is a high-level depiction of the spline framework
for ECG analysis. The algorithm initializes knot locations
then optimizes them using error metrics calculated from
the original waveform and interpolated representation. The
framework allows choice of initialization algorithm, error
measure, interpolant, and optimization algorithm to tailor the
framework for applications with varying requirements.

Choice of interpolant is very important to ensure the goals
of a given framework application are met. For waveform
delineation, we need characteristic points placed at critical
points and points of inflection as described above. Fig. 2
shows a sample ECG complex extracted from the European
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(a) Linear interpolant, RMSE=44.4 µV
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(b) Cubic Hermite interpolant, RMSE=23.0 µV
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(c) Cubic spline interpolant, RMSE=43.0 µV

Fig. 2. Knots for several interpolants on a beat from EDB record e0406.

ST-T database (EDB) [18] record e0406 superimposed with
the results of three different interpolants. Each interpolant
was run with 12 randomly-initialized knots and optimized
using a genetic algorithm. The genetic algorithm was im-
plemented by encoding a population of 25 chromosomes
with random perturbations of the initial knot locations, then
creating the next generation of offspring by applying single-
point crossover and mutation in a constrained neighborhood
around the knot locations. We used the mean squared error
as the fitness function, and propagated the best offspring
through 500 generations.

From Fig. 2 it is clear that with a sufficient number of
knots the linear, cubic Hermite, and cubic spline interpolants
represent the signal well. And while knot locations for the
linear and cubic Hermite interpolants approximate waveform
onsets, offsets, and peaks, differentiability constraints im-
posed by the cubic spline interpolant have forced them to
vary from the desired characteristic points. This is evidenced
in Fig. 2c, which shows knot locations no longer correspond
to P and R wave onset and T wave peak.

A large number of knots will improve the spline represen-
tation of the waveform regardless of interpolant. However,
too many knots increase computational effort required to
implement the framework and make it difficult to determine
correspondence of knots to characteristic points. The opti-
mum number of knots to represent characteristic points is
highly dependent on waveform morphology, so we require
a dynamic, efficient method to make the initial assignments.
For this purpose we used a recursive partitioning algorithm
(RPA). RPA linearly interpolates between the endpoints of
the signal segment and finds the waveform point farthest
from the interpolated line. It then recursively applies itself
to the new line segments generated by each existing endpoint
and the point of maximum distance. The recursion terminates
when the maximum difference between the interpolated
and original waveforms is less than a waveform-dependent
empirically-derived threshold selected to maintain key fea-
tures.

Fig. 3 illustrates operation of the RPA at different stages.
Fig. 3a follows the second partition. The next largest differ-
ence between the interpolated and original waveforms is the
onset of the R wave, which is picked for the third partition
in Fig. 3b. The final result is shown for a threshold value
of 0.1 mV in Fig. 3c. Lowering the threshold further would

have resulted in partitions at ≈ 0.3 and ≈ 0.5 seconds.

III. RESULTS
To validate applicability of the framework for character-

istic point identification, we tested it on a larger number of
samples from the EDB. We selected waveforms to illustrate
a wide range of morphologies including fusion, ST segment
deviation, T wave deviation and inversion, and premature
ventricular contraction. We extracted pattern vectors from
both available channels, including P and T waves around
each fiducial marker obtained from the atr annotator for
each record.

Recursive partitioning provided the initial knot locations
which were optimized using the genetic algorithm described
above, for both linear and cubic Hermite interpolants. Fig. 4
shows the results of framework applied to the selected
beats for the cubic Hermite interpolant. Table I tabulates
the number of knots (nk) selected by the RPA and RMSE
values between the original waveform and interpolated ap-
proximation for original (non-optimized) knots provided by
RPA with linear interpolant (e1), RPA knots optimized by
genetic algorithm using a linear interpolant (e2), and RPA
knots optimized by genetic algorithm using a cubic Hermite
interpolant (e3). The final row indicates the mean and stan-
dard deviation of the RMSE values for each method.

TABLE I
FRAMEWORK RESULTS ON TEST SET

Record Lead nk e1 (µV) e2 (µV) e3 (µV)

e0114
MLIII 16 20.4 14.4 14.4

V4 18 19.0 14.2 12.1

e0116
V4 11 57.2 44.1 42.2

MLIII 9 30.8 21.7 22.4

e0123
V4 23 20.7 16.7 9.7

MLIII 14 13.3 11.1 13.1

e0161
V4 22 17.0 12.8 7.9

MLIII 15 18.5 11.7 9.0

e0206
V5 19 29.9 25.8 23.7

MLI 14 23.7 16.7 14.6

e0413
V2 13 36.3 32.7 17.7
V5 11 41.0 37.0 27.9

µ± σ 27.3±12.6 21.6 ±11.0 17.9 ±9.9

IV. DISCUSSION
Results with a small but diverse set of beats indicate

that the spline framework is a viable, complementary option
to existing methods for parametric modeling of the ECG
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(a) Second partition

0 0.1 0.2 0.3 0.4 0.5
-0.5

0

0.5

1

1.5

2

A
m

pl
itu

de
 (

m
V

)

Time (sec)

(b) Third partition
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(c) Final partition, 0.1 mV threshold

Fig. 3. Recursive Partitioning Algorithm applied to a beat from EDB record e0406. The thick gray line is the original waveform; the thinner red line is
the interpolation, and the red circles indicate the initial knot locations.

waveform, and with appropriate choices (interpolant, knot
initialization/optimization algorithm, error criteria) can iden-
tify waveform characteristic points.

Recursive partitioning provides a good initial estimate
of knot locations corresponding to waveform characteristic
points and dynamically selects an appropriate number of
knots, but choice of threshold is very important: smaller
values will be more sensitive and can pick undesired artifact
as initial knot locations; larger values may miss required fea-
tures. Fig. 4b illustrates a good compromise for a waveform
with a large amount of line noise. Smaller threshold values
for this example resulted in all sinusoidal peaks and valleys
being selected; with proper threshold and MSE criterion,
the interpolated result effectively reduces the line noise and
characteristic points are reasonably represented by the knots.

For overall waveform reproduction fidelity, RMSE values
for the cubic Hermite interpolant are generally superior to
those from the optimized linear interpolant (although there
are a few exceptions). Our experience with this interpolant
is consistent with [14], in which Hermite basis functions are
used to model the ECG signal. Subsequent work will evaluate
knot locations corresponding to each interpolant.

V. SUMMARY

We have presented preliminary results of a spline-based
framework for ECG analysis, with initial application to ECG
waveform delineation. For this application the framework is
structured (by choice of knot initialization algorithm, error
criterion, interpolant, and knot optimization algorithm) to
place knots at characteristic points which define waveform
onset, offset, and peak values, as well as junctions corre-
sponding to points of inflection.

The flexibility provided by the framework allows the prac-
titioner to make tradeoffs between computational complexity,
fidelity of signal reproduction, and physiological relevance
of knot location, complementing existing parametric models
of the ECG waveform.
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(b) e0116
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(d) e0161
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(e) e0206
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(f) e0413

Fig. 4. Framework results for beat delineation with cubic Hermite interpolant on selected beats from the European ST-T Database. The thick gray line
is the original waveform; the thinner red line is the cubic Hermite interpolation, and the red circles indicate the optimized knot locations.
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