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Abstract - Acute myocardial infarction (AMI) diagnosis in 
type II diabetes (DM2) patients is difficult and ECG findings 
are often non-diagnostic or inconclusive.  We developed 
computer algorithms to process standard 12-lead ECG input 
data for quantitative 3-dimensional (3D) analysis (my3KGTM), 
and hypothesized that use of the my3KGTM’s array of over 
100 3D-based AMI diagnostic markers may improve diagnostic 
accuracy for AMI in DM2 patients. 

Methods: We identified 155 consecutive DM2 patients age 
>25 yrs with chest discomfort or shortness of breath who were 
evaluated at an urban emergency department (130 patients 
(pts)) or the cardiac catheterization laboratory (25 pts) for 
possible AMI.  The first digital 12-lead ECG for each patient, 
obtained within 30 min of presentation, was evaluated by (1) 2 
blinded expert cardiologists, and (2) my3KGTM.  In each case, 
the ECG was classified as either likely AMI or likely non-AMI.  
“Gold standard” was the final clinical diagnosis.  Statistical 
analysis was McNemar’s test with continuity correction. 

Results: The 155 DM2 patients were 50% male, mean age 
56.8 ± 12.0 yrs; 44 pts had a final clinical diagnosis of AMI (17 
ST Elevation Myocardial Infarctions (STEMI), 27 Non-ST 
Elevation Myocardial Infarctions (NSTEMI)) and 111 had no 
AMI.   

Conclusions: Relative to standard 12L ECG read by 
cardiologists, quantitative 3D ECG analysis showed significant 
and substantial gains in sensitivity for AMI diagnosis in DM2 
patients, without loss in specificity.  Sensitivity gains were 
particularly high in patients exhibiting NSTEMI, the most 
common form of AMI in DM2.   

 
Index Terms - Electrocardiography, Diabetes Mellitus, 

Acute myocardial infarction 

I. INTRODUCTION 

The standard 12-lead electrocardiogram (ECG) is 
invaluable for initial diagnosis of suspected heart disease, 
but is limited by relatively low diagnostic sensitivity and 
specificity [1].  In part, these limitations can be attributed to 
the fact that the ECG provides a 2-dimensional (2D) 
representation of cardiac electrical activity, an inherently 3-
dimensional (3D) event.  In addition, inaccurate physician 
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interpretation of ECGs remains a significant issue; studies 
have demonstrated errors of “major proportions” in 4% to 
32% of routine ECG interpretations [2].  Such interpretive 
errors can lead to clinical mismanagement, such as failure to 
detect and appropriately treat patients with acute myocardial 
ischemia.   

Over the years, various efforts have been made to address 
the diagnostic limitations of the ECG, including but not 
limited to vectorcardiography, body surface mapping, and 
magnetocardiography [3-5].  One of the earliest examples of 
such efforts was vectorcardiography and primarily used from 
1940s to the 1970s.  A vectorcardiogram (VCG) is a spatial 
representation of magnitude and direction of the electrical 
currents of the heart analyzed in three orthogonal planes.  
Like the ECG, the VCG records and presents information 
about the electrical potential difference between the body 
surface and an electrical dipole in the approximate center of 
the heart.  However, in the ECG, signal waveforms are 
presented individually as recorded from individual leads, 
whereas in the VCG, measurement points are positioned so 
that the three derived signals correspond to the three 
orthogonal axes (X, Y, & Z). 

In spite of its diagnostic promise, vectorcardiography 
declined considerably by the 1970s.  The decline was fueled 
by the technique's limitations, including complexity, the 
need for special leads and equipment, and – because of the 
era’s technological limitations - a relatively small yield of 
diagnostic information.  However, even with limited 
technology, VCG proved at least as powerful as the ECG in 
diagnosing a number of important conditions, including 
myocardial infarction, chamber enlargement, conduction 
abnormalities, and pre-excitation [3]. 

Remarkable gains in computational power create an 
opportunity to extract substantially more diagnostically 
valuable 3D information from the ECG signal, significantly 
enhance the ECG’s diagnostic utility, and make it easier to 
use for the medical professional.  We developed a set of 
algorithms and tools, named my3KGTM, that provide a 
comprehensive method to describe cardiac electrical activity 
in time and 3D space.  my3KGTM extracts additional 
information from standard 12-lead ECG signals and uses it 
to generate a 3D representation of cardiac electrical activity 
as a function of time.  The my3KGTM also includes 
algorithms for real-time vectorial analysis and normalization 
tools to ensure accurate and balanced representation of all 
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heart regions. 

I. METHODS 

The my3KGTM approach comprises 4 main steps [6]: 

1. Transform input from the standard 12 lead ECG 
into X,Y,Z components of the heart vector 

2. Normalize the lead vectors to equalize electrical 
representation from all regions of the heart. 

3. Characterize the lead vectors to extract useful 
information regarding the presence or absence of 
acute myocardial infarction 

4. Classify patients as either having acute myocardial 
infarction or not having myocardial infarction 

Transforming ECG input into X, Y, Z components of the 
heart vector.  Several algorithms are available for converting 
12 lead ECG data to orthogonal components of the heart 
vector [7-9].  One such algorithm is the inverse Dower 
matrix (ID), which is applied to ECG signals recorded from 
the standard positions of the leads [10].  The heart vector is 
calculated: 

. (1) 

The X, Y, and Z components of the heart vector ( ) may 
be solved at any time point by applying the ECG data ( ) 
into the above equation. 

Normalize the lead vectors.  The my3KGTM includes a 
suite of algorithms to correct the problem of regional 
variation in electrical attenuation.  Each lead attenuation 
factor is normalized to a standard or common attenuation 
factor.  Individual lead attenuation factors (ρi) are calculated 
for each of the six precordial leads, the calculated individual 
ρi’s are used to derive a single attenuation factor ρ, and ρ is 
then used as the common attenuation factor for all precordial 
leads. The frontal leads do not normalization due to the 
distal electrode positions.  

Precordial lead vector magnitudes are calculated as 
follows, where Vi(t) is the recorded voltage over time from a 
lead and Vdi(t) is the derived voltage for each of the ECG 
leads.  Derived lead voltages are calculated as a scalar 
product of the heart vector H and a lead vector, L, or 
alternatively  

, (2) 

Where  denotes the heart vector and  is the unit lead 
vector defined by the direction of the position of the ith 
electrode (e.g., precordial electrode 1 to 6), and ρi is the 
unknown lead attenuation factor for each electrode.  Using 
the least squares method, the unknown attenuation factor ρi 
for every lead can therefore be calculated as a minimum of 
the function: time averaged difference of derived ECG lead 
and corresponding measured lead 

, (3) 

where T is the recording time.  From this, we derive the 

relationship as: 

. (4) 

Each measured attenuation factor ρi is calculated by 
solving for the minimum value of the least-squares 
difference between the actual ECG waveform and a derived 
ECG waveform calculated from the heart vector at that 
point.  The normalized attenuation factor, ρ, is selected from 
the range of individual attenuation factors (ρi) for measured 
leads.  Each individual attenuation factor is approximately 
equal to the ratio between a virtual cardiac signal derived 
from the heart vector for a given lead over some time period, 
and an actual cardiac signal recorded at the same lead for the 
same time period of time.  In this manner, the normalized 
attenuation factor, ρ, is chosen to minimize the difference 
between the derived signal and the signal as actually 
recorded across all precordial leads.   

Using the normalized attenuation factor, one can derive 
the time dependent voltage in any virtual lead at any time: 

. (5) 

The normalization factor can be used to draw a virtual 
“sphere” of equal signal attenuation around the heart, and 
can be used to calculate a derived voltage at any point on the 
virtual sphere (Fig 1), whether or not that point corresponds 
to a measured lead. 

 
Fig. 1.  Calculation of a “virtual sphere” of normalized cardiac 
electrical activity.  See text for discussion. V3R, V4R, V7, and V8 are 
additional electrode location that may be used in an ECG recording. 

For example, as shown in Fig. 1, it is possible to calculate 
virtual leads corresponding to V3R, V4R, V7 and V8 even 
though there is no corresponding measured value.  
Importantly, normalization assures that the derived voltages 
may be directly compared to any other normalized voltages 
on the virtual sphere.  Thus, for example, 1 mm of ST 
segment deviation in any of the derived leads is directly 
comparable to 1 mm of ST segment deviation in any of the 
normalized precordial leads. 

In this manner, normalization allows direct comparison of 
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cardiac voltage levels anywhere around the heart (Fig. 2).  
Thus, it is particularly helpful for ECG-based diagnostic 
markers that rely in part on the magnitude of recorded 
cardiac electrical signals (for example, ST segment shift in 
ischemia, R wave voltage in left ventricular hypertrophy, P 
wave voltage in atrial enlargement, etc). 

 

 
Fig. 2.  Using a common attenuation factor to normalize lead 

voltages.  In this figure, both the measured voltages in V3 and V6 (blue 
lines) and derived voltages (V3ri and V6ri, red lines) are shown 
superimposed.  The derived voltages are calculated by use of the 
common attenuation factor as described.  Note that in lead in V3, the 
measured voltages generally larger than the derived voltage, whereas in 
lead V6, the derived voltage is generally larger than the measured 
voltage.  The derived voltages are calculated so that they would fall on 
the "virtual sphere" (Fig. 1). 

Characterization of the lead vectors.  After the leads are 
normalized, useful characteristics need to be extracted from 
these normalized leads in order to determine the presence or 
absence of acute myocardial infarction (AMI).  These 
characteristics, called markers, can be used to specifically 
characterize AMI or other ECG diagnosis.  For instance, one 
of the markers is the ST elevation.  Some AMI patients have 
a characteristic ST elevation myocardial infarction.  
However, patients with left ventricular hypertrophy (LVH), 
right bundle branch block (RBBB), benign early 
repolarization (BER), among other all exhibit ST elevation.  
Some patients can have multiple diagnoses such LVH with 
AMI or RBBB with AMI.  Since these patients can have 
multiple diagnoses and each diagnosis have overlapping 
characteristics, many markers are used to classify patients 

with AMI.  These markers included: ratiometric (e.g., R 
peak to ST elevation), angular (e.g. angle QRS to T loops) or 
cluster-specific (e.g. BER, RBBB specific clusters). There 
are a total of 15 proprietary markers derived from the 
normalized leads and the heart vector used in the current 
version of my3KG.  

Classifying patients.  After all markers for the given ECG 
are generated, these markers are used to diagnose the 
patients.  The classification scheme is a hierarchical 
approach with individual decision made through quadratic 
discriminate analysis classifiers.  The output of this 
algorithm is a single AMI or non-AMI response.   

The classifier was developed on a set of approximately 
800 ECGs recording from emergency department, 
catheterization laboratory, and cardiac clinics.  These 
recordings contained both STEMI and NSTEMI ECGs as 
wells as ECGs with pseudo-ischemia. Pseudo-ischemia’s are 
ECGs with characteristics of an AMI, but the patient does 
not have AMI. These ECGs include patients with BBB, 
LVH, pericarditis, myocarditis, Wolf-Parkinson-Wolf 
syndrome, and others. The patients in the current study are 
not patients in the 800 ECG training set.  

II. RESULTS 

University of Kansas Medical Center Study in AMI 

The study included 155 consecutive patients who: 
presented to either University of Kansas Medical Center 
(KU, Kansas City, KS) Emergency Department with chest 
discomfort or shortness of breath; were admitted to KU 
cardiac catheterization laboratory for suspected myocardial 
infarction; received an ECG recording within 30 minutes of 
admission; had cardiac troponin I levels measured within 90 
minutes of admission; and had Type II diabetes Mellitus 
(DM2).   

The primary endpoint of the study was to compare the 
sensitivity and specificity of my3KGTM software to expert 
cardiologists.  There are two cardiologists with experience 
reading ECGs.  Their results (true positives, false positives, 
true negatives, and false negatives) were averaged to obtain 
one set of results.  Both my3KGTM and the cardiologists 
were given the same ECGs and both had to label the patient 
as either having AMI or not having AMI.  my3KGTM was 
blinded to the patients’ age, sex, signs, symptoms, and 
clinical history.  The cardiologists did know that the patients 
in this data set arrived at an emergency department with 
chest discomfort or shortness of breath, received an ECG 
recordings within 30 minutes of admission, and had troponin 
I levels measured within 90 minutes of admission. The 
cardiologists were blinded to other clinic symptoms, the 
patients’ age, sex, signs, clinical history, and the results of 
any tests.  The proportions of ECGs categorized as AMI or 
non-AMI by both methods were compared using 
McNemar’s test with continuity correction. 

Of the 155 patients, 78 patients were male.  The mean age 
of the 155 patients was 56.8 ± 12.0 years.  26 patients had 
LVH; 6 patients had RBBB; and 4 had atrial fibrillation, 
atrial flutter, and/or supraventricular tachycardia.  44 
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patients had a final clinical diagnosis of AMI with 17 of 
these 44 patients having ST elevation myocardial infarction 
(STEMI) and 27 having non-ST elevation myocardial 
infarction (NSTEMI).  111 patients did not have AMI.   

The sensitivity (true positives detection divided by total 
number of patients with AMI) and specificity (true negative 
detection divided by total number of patients without AMI) 
were recorded for both the algorithm and the cardiologists 
and compared (Table 1).  The sensitivity for my3KGTM and 
the cardiologists was 68% and 48%, respectively.  The AMI 
patients can be subdivided into STEMI and NSTEMI.  The 
sensitivity for my3KGTM was 82% and 59% for STEMI and 
NSTEMI, respectively.  The sensitivity for cardiologists was 
65% and 37% for STEMI and NSTEMI, respectively.  The 
specificity for my3KGTM and the cardiologists was 87% and 
86%, respectively.  my3KGTM performed statistically better 
in sensitivity without compromising the specificity.   

 
Table 1.  The sensitivity and specificity of detecting acute 

myocardial infarction (AMI) in diabetic patients.  The cardiologists 
generally performed worse in detecting AMI than the my3KGTM 
algorithm.  The cardiologists’ specificity was comparable to the 
my3KGTM algorithm. 

 

III. CONCLUSION 

The purpose of this study was to determine if the 
my3KGTM algorithm could detect acute myocardial 
infarction with greater accuracy than the expert cardiologists 
in patients with type II diabetes mellitus.  AMI diagnosis in 
DM2 patients is difficult and ECG findings are often 
inclusive.   

In this study, 2 expert cardiologists diagnosis were 
compared with the my3KGTM diagnosis.  my3KGTM was 
able to diagnosis more AMI correctly without suffering any 
loss in specificity.  The largest relative gain in sensitivity 
was a result of the increased detection of NSTEMI AMI.  In 
NSTEMI, patients’ ECGs do not exhibit the characteristic 
ST elevation that is commonly associated with AMI making 
the ECG harder to diagnose.  DM2 patients generally have a 
higher occurrence of NSTEMI than a patient without DM2 
[11, 12].  The algorithm had a lower, non-significant relative 
gain in detecting STEMI AMI compared to the cardiologists.   

One limitation of this study is its relatively low sample 
size.  The all AMI and NSTEMI difference were large 
enough that a significant statistical test could be determined.  
However, the STEMI population size was too small to show 
statistical difference between the two results.  A larger study 
needs to be conducted to determine if these results hold true. 

Relative to standard 12L ECG read by cardiologists, 
my3KGTM showed significant gains in sensitivity for AMI 

diagnosis in DM2 patients, without loss in specificity.  
Sensitivity gains were particularly high in patients exhibiting 
NSTEMI, the most common form of AMI in DM2. 
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Cardiologists my3KG Relative Gain

Sensitivity All AMI 48%

(21 TP / 44 Total)

68% 

(30 TP / 44 Total)

43%

p < 0.01

STEMI 65%

(11 TP / 17 Total)

82% 

(14 TP / 17 Total)

27%

p = NS

NSTEMI 37%

(10 TP / 27 Total)

59% 

(16 TP / 27 Total)

60%

p < 0.05

Specificity No AMI 86%

(95 TN / 111 Total)

87% 

(96 TN / 111 Total)

1%

p = NS
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