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Abstract— Ventricular arrhythmias arise from abnormal
electrical activity of the lower chambers (ventricles) of the
heart. Ventricular tachycardia (VT) and ventricular fibrillation
(VF) are the two major subclasses of ventricular arrhythmias.
While VT has treatment options that can be performed in
catheterization labs, VF is a lethal cardiac arrhythmia, often
when detected the patient receives an implantable defibrillator
which restores the normal heart rhythm by the application
of electric shocks whenever VF is detected. The classification
of these two subclasses are important in making a decision
on the therapy performed. As in the case of all real world
process the boundary between VT and VF is ill defined which
might lead to many of the patients experiencing arrhythmias
in the overlap zone (that might be predominately VT) to
receive shocks by the an implantable defibrillator. There may
also be a small population of patients who could be treated
with anti-arrhythmic drugs or catheterization procedure if
they can be diagnosed to suffer from predominately VT after
objectively analyzing their intracardiac electrogram data
obtained from implantable defibrillator. The proposed work
attempts to arrive at a quantifiable way to scale the ventricular
arrhythmias into VT, VF, and the overlap zone arrhythmias as
VT-VF candidates using features extracted from the wavelet
analysis of surface electrograms. This might eventually lead
to an objective way of analyzing arrhythmias in the overlap
zone and computing their degree of affinity towards VT or
VF. A database of 24 human ventricular arrhythmia tracings
obtained from the MIT-BIH arrhythmia database was analyzed
and wavelet-based features that demonstrated discrimination
between the VT, VF, and VT-VF groups were extracted.
An overall accuracy of 75% in classifying the ventricular
arrhythmias into 3 groups was achieved.

Index Terms— Human Ventricular Fibrillation, Ventricular
Tachycardia, Wavelet Analysis, Pattern Classification

I. INTRODUCTION

A vast majority of patients suffering ventricular

arrhythmias could be grouped into two major categories

of ventricular tachycardia (VT) and ventricular fibrillation

(VF). VT is an abnormally fast rhythm with organized

electrical activity whereas VF is disorganized and lethal

of the arrhythmias. Often the arrhythmia starts as an

organized VT and degenerates into disorganized and

lethal VF. The treatment options for these two types of

arrhythmias are different. When a patient is diagnosed with

VT, usually a catheterization procedure is performed to

ablate the source re-entrant circuit while an implantable

cardioverter-defibrillator (ICD) is administered for patients
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who are more prone to VF. Existing ICD devices analyze

short periods of electrograms and apply VF/VT detection

algorithms to chooses between pacing or shock in treating

the arrhythmias [1]. ICDs have protected patients from VF

for the last 30 years, however, they do suffer from problems

associated with battery life-time (requiring periodic invasive

procedures), lead wire issues, and external interferences [2].

In diagnosing patients for VT or VF treatment, there exist

a small population of patients who might be experiencing

arrhythmias in the overlap zones in between VT and VF.

These patients might be suffering from arrhythmias that

originate from predominately VT sources. If by analyzing

their intracardiac electrogram data obtained from the ICD

shock records an objective assessment can be made on the

degree of affinity of the arrhythmias towards VT or VF, it

might be of assistance for the clinician to decide on the

treatment options (i.e., anti-arrhythmic drugs or undergo VT

ablation procedure which is a long term better solution).

As a first step in attempting to arrive at such an objective

assessment the proposed work presents a methodology

to classify or scale the range of ventricular arrhythmias

into VT, VF, and the VT-VF overlap zones using surface

electrograms.

Owing to the complex signal morphology that changes

with time (especially the non-stationary nature of VF

signals) it is a challenging issue to identify these overlap

zones between VT and VF using simple time-domain

or frequency domain signal processing tools. Hence,

the proposed work uses wavelet analysis (a time-scale

technique) to segregate the surface electrograms into VT,

VF, and VT-VF signals. While there are many existing

techniques that can detect VT and VF onsets, as discussed

in [1], detecting the VT-VF overlap zone is challenging and

is a novel approach in optimizing the choice of treatment.

Wavelet analysis is attractive for this study as they are better

suited for studying morphological (time-scale) patterns

and are computationally less expensive and hence could

provide near real-time feedbacks in assessing the ventricular

arrhythmias [3]. There have been many studies performed

where the Dominant Frequency, Frequency Bandwidth and

peak height [4] as well as harmonic analysis [5] have been

used to analyze VT/VF. Most of these works however use

this information in predicting the shock outcome during

resuscitation then for the above stated motivation of this

paper. The block diagram of the proposed method is shown

Figure 1. The paper is organized as follows, Section II
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Fig. 1. Block diagram outlining the study
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Fig. 2. Sample signals from VT, VT-VF, and VF groups
presents the details on the database and the methodology,

Section III presents the results and discussions and the

conclusions are provided in Section IV.

II. METHODS

A. Database

A database of 24 surface electrogram segments (4

seconds each) were extracted from the physiobank archive

[6] found from the MIT-BIH Database. In particular

12 patients were used from the Creighton University

Ventricular Tachyarrhythmia Database as well as the

MIT-BIH Malignant Ventricular Arrhythmia Database.

All signals were downsampled uniformly at 250 Hz and

bandpass filtered between 0.3Hz to 30Hz [7]. The signals

were normalized, which reduced the variance between

the average signal levels while preserving the relative

signal variation. Of these 24 signals, 8 VT, 8 VF, and

8 VT-VF (overlap zone) candidates were chosen by

experienced electrophysiologists at the Toronto General

Hospital, Toronto, Canada. This segregation served as the

ground truth against which the proposed methodology was

evaluated. Figure 2 shows a sample signal from each of the

3 group.

B. Frequency Analysis

Existing works have used frequency analysis to study VF

electrograms and have extracted features such as dominant

frequency, bandwidth, harmonicity for various applications

[4]. Most of these works were motivated in predicting shock

outcomes during cardiac resuscitation [8]. We performed our

initial analysis using the 24 four second segments. Based on

the observed differences in the signal morphologies between

VT and VF (i.e. VT is predominately mono component, VF

is multicomponent), features that highlight the spread of

signal energy over frequency were considered. We extracted

and studied the bandwidth and the harmonicity as an

indicator for the organization levels of VT, VF, and VT-VF

signals. While there was a good separation between the VT

and VF signals as expected, the features performed poorly

in discriminating the VT-VF signals from VF signals. This

logically lead us to the joint time-frequency and time-scale

techniques where the information is spread simultaneously

over time and frequency/scale providing more flexibility in

characterizing subtle time-varying signal characteristics.

C. Wavelet Analysis

Wavelet analysis have been applied to VF electrogram anal-

ysis by many existing methods including our previous works

[9], [3] however in a different problem domain. In contin-

uous wavelet transform (CWT), a signal x(t) is expressed

as a combination a scaled (dilated) and translated version

of a mother wavelet (a small waveform satisfying certain

properties) and is given by the following equation.

Cx(a, b) =
1√
a

∫

∞

−∞

x(t) ψ∗

(

t− b

a

)

dt (1)

The coefficients associated with the scale a and translation

b parameters then provide the signal information spread

over specific range of scales and times. All the 24 signals

from the database were filtered (0.3Hz to 30Hz) and energy

normalized and decomposed into continuous wavelet coeffi-

cients using the complex Morlet wavelet. A complex wavelet

was used as in order to analyze the temopral evolution of

frequency [10]. The wavelet coefficients were normalized as

a percentage of the total signal energy given by the following.

Ĉx(a, b) =
100× (|Cx(a, b)| × |Cx(a, b)|)
∑

(|Cx(a, b)| × |Cx(a, b)|)
(2)

Scalograms using the normalized wavelet coefficients

were constructed for each of the signals. Scalograms are

3D plots representing the energy distribution (z axis) of the

signal over different scales (y axis) and time (x axis).
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Fig. 3. Scalogram for a sample signals from VT, VT-VF, and VF groups

D. Wavelet Features

We analyzed the scalograms for the three groups of

signals (VT, VF, and VT-VF) and observed that the energy

distribution between VF and VT-VF having distinct patterns

in terms of their energy spread over time and scale. VT was

obviously different with energy concentrated on few scales

over the entire time. Figure 3 shows the scalograms for a

sample signal from each of the groups. The scalograms

found in Figure 3 correspond to the arrhythmia signals

found in Figure 2. In order to quantify the differences

observed in the scalograms we extracted the following

features.

Number of islands: Depending upon the organization levels

of the electrograms, the signal energy is distributed over

multiple components spread over time and scale. Hence a

threshold was applied to retain the most significant coef-

ficients i.e., only those islands (confined areas of energy

distributed over time and scale) that accounted for the top

25% of the signal energy.

|C̃x(a, b)|
∑∑ |Ĉx(a, b)|

= 25% (3)

C̃x represents the peak coefficients that represent 25% of

the signal energy. The threshold (δ) was then computed by

obtaining the coefficient that will retain 25% of the signal

energy.

Dx,Ii(a, b) = |Cx(a, b)| > δ (4)

Dx,Ii provided us with multiple components or islands

of interest for which we extracted the time width of each

component. The peaks of interest or islands of components

(components that were found to be above the threshold) were

obtained by using the Moore-Neighbor tracing algorithm

proposed by [11].

Average time-width: This feature represents the width of a

particular Dx,Ii with respect to time. The width signifies the

duration of a particular component found from the signal.

It would be expected that VT signals would have a much

larger time width signal, due to the monotonic nature of the

signal, VT-VF would have multi-component, yet relatively

larger time width when compared to a VF signal.

Once the feature was extracted, a weighted mean was

taken across all the components to arrive at an average time

width which best represents the signal at hand. The time

width was then obtained for all four second sample signal in

the database.

III. RESULTS AND DISCUSSION

All the 24 signals were decomposed into wavelet

coefficients and the features as explained in the previous

section were extracted. These two features indirectly

represented the number of components and average time

width of the signal energy which in turn is related to the

organization levels of the three group of signals. The box-

plot of the features are shown in Figures 4-5. It is evident

from the average time-width box-plot (Figure 5) that there

are 3 distinct groups. VF occupied the compact and lowest

of the average time-width range due to the fact that the

signal energy is well spread in the time-scale plane resulting

in islands of smaller area. VT-VF and VT had increasing

average time-widths with VT being well separated from the

other two. The discrimination demonstrated between the VT,

VT-VF and VF that expresses the power of the proposed

approach, even though there is some overlap between the

three groups. The number of islands feature did not perform

well, since a significant overlap could be observed between

the VF and VT-VF group. So we used only the average

time-width feature and performed an automated pattern

classification.

A linear discriminant analysis (LDA) based classifier was

used to perform the classification [12]. Since the database

was small, we performed cross validation of the results

using the leave-one-out method where the classifier is

trained with all samples but one and the left out sample was

used as a testing set. This is repeated by leaving out each of

the sample as the testing set and training with the remaining

samples. The results of all the iterations were then averaged

to obtain the classifier accuracy. Table I shows the results

obtained for the 3 group classification using the LDA based

classifier and the leave-one-out method with the average

time-width feature. An overall classification accuracy of

75% was achieved. The statistical analysis of the group

mean indicated a significant difference (p≤0.0007).

From the Table I we could observe that 2 out of the 8 VF

signals were misclassified into the VT-VF group and 2 out

of 8 VT-VF signals were classified into the VF group. This

is explained by the fact that medians of VF and VT-VF are
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Fig. 4. Boxplot of the number of islands feature showing distribution for
the 3 groups
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Fig. 5. Boxplot of the average time-deviation feature showing distribution
for the 3 groups

closer resulting in a overlap which is naturally expected.

Similarly 2 out of the 8 VT signals were classified into

VT-VF group which is the closest neighboring group. We

analyzed the misclassified signals of VF and VT-VF and

observed them to contain portions of the the other group

characteristics present in them (i.e., the misclassified VF

signal contained organized structures and the vice versa for

the misclassified VT-VF signals). Similarly the misclassified

VT signals demonstrated temporal signal modulations which

resulted in increased islands, explaining the migration of VT

towards the VT-VF groups. The interesting information we

gather from this analysis is that there is a natural transition

from VT to VF, which could be defined as VT-VF.

TABLE I

CROSS-VALIDATED: LINEAR DISCRIMINANT ANALYSIS WITH

LEAVE-ONE-OUT METHOD, % - PERCENTAGE OF CLASSIFICATION.

Method Groups VF VT-VF VT Total

Cross-validated VF 6 2 0 8

VT-VF 2 6 0 8

VT 0 2 6 8

% VF 75 25 0 100

VT-VF 25 75 0 100

VT 0 25 75 100

IV. CONCLUSIONS AND FUTURE WORKS

We have presented a wavelet based methodology to dis-

criminate the ventricular arrhythmias especially the VT-VF

type signals which are in the overlap zone of VT and VF.

Our analysis revealed that we can capture the subtle morpho-

logical changes between the three groups of signals using

wavelet analysis. This will lead us to objectively asses the

VT-VF type arrhythmias and compute their affinity towards

VT or VF. The future work will investigate the proposed

features on a larger database that also includes normal sinus

rhythm episodes and explore other time-frequency/time-scale

features in categorizing VF arrhythmias, that might lead to

better focal therapies.
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