
  

 
Abstract—Myocardial infarction (MI), generally known as a 

heart attack, is one of the top leading causes of mortality in the 
world. In clinical diagnosis, cardiologists generally utilize 
12-lead ECG system to classify patients into MI symptoms: 1. ST 
segment elevation, 2. ST segment depression or T wave inversion. 
However unstable ischemic syndromes have rapidly changing 
supply versus demand characteristics that is one of the several 
limitations of 12-lead ECG system for MI detection. In addition, 
the ECG sensor placements of 12-lead system is not easily 
donned and doffed for tele-healthcare monitoring at home. 
Vectorcardiogram (VCG) system in clinic is another type of 
diagnosis plot which represents the magnitude and direction of 
the electrical potential in the form of a vector loop during 
cardiac electric activity. The VCG system can easily acquire 
three ECG waves from X, Y, Z directions to composite vector 
signal in space and the VCG signals can be transferred to 
12-lead ECG signal through Dower transformation and vice 
versa. Hence, this study attempts to develop a VCG-based 
classification system for the detection of Myocardial infarction. 
In the experiment results, the proposed system can select the 
proper ECG features based on cardiologist’s knowledge and 
proposed principal moments of QRS complex. The classification 
performance of MI detection can be reached to 99.89% of 
sensitivity, 92.51% of specificity, 95.35% of positive predictive 
value, and 96.96% overall accuracy with maximum-likelihood 
classifier (MLC). 
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I. INTRODUCTION 
yocardial infarction (MI), generally known as a heart 
attack, is the interruption of blood supply to a part of 

heart, causing heart cells to die [1, 2]. In general, MI can take 
place in different portions of heart, such as anterior, inferior, 
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posterior, inferior-lateral, anteriorseptal, posterior-lateral, and 
the traid of MI is ischemia, lesion and infarction [1, 2]. Among 
the diagnostic tests available to detect heart muscle damage 
are an electrocardiogram (ECG), echocardiography, and 
various blood tests, such as aspartate aminotransferase, 
creatine kinase, myoglobin, and tropnin-T etc. [3]. 

The ECG signals are vital to investigate human’s health, 
and have been used as a common tool to assist to detect the 
abnormal cardiac electrical activities for a long time. The 
most commonly used clinical ECG-system, the 12-lead ECG 
system, consists of the following 12 leads, which are I, II, III, 
aVR, aVL, aVF, V1, V2, V3, V4, V5[4]. The diagnosis of 
different types of MI in the standard clinical 12-lead ECG has 
different diagnostic key observations, for example, T 
waveforms invert, ST-elevation, and pathological Q 
waveforms [1, 5, 6]. However, the key characteristics of MI 
are too hard to capture from one perspective view of the 3 
dimension heart electrical activities for each one lead ECG 
signal. Recent advances in computer graphics and wireless 
technologies have renewed interest in three Frank orthogonal 
leads vectorcardiogram (VCG), X, Y, Z lead, that use fewer 
leads than the conventional 12-lead ECG signals for medical 
diagnostic applications[7]. In the signal process aspect, VCG 
has a linear transformation with 12-lead ECG [7-9], and 
emerges as a natural option for 3-dimensional graphical and 
visualization systems, as seen in Figure 1, for detecting and 
monitoring cardiac disorders, such as various types of 
myocardial infarction and atrial fibrillation (AF) [7]. In home 
care aspect, wearing 3-lead Frank VCG device is easier and 
more convenient than 12-lead ECG device for users. 

In clinical, Starr et al. [5] proposed three diagnostic criteria 
of inferior myocardial infarction by the frontal plane of VCG 
signals, and there are i) time from the 0 point to leftward X 
intercept and distance from the 0 point to leftward X intercept, 
ii) A maximal frontal plane QRS vector, and iii) A maximal 
superior deviation and a ratio of maximal superior deviation to 
maximal inferior deviation. Bortolan and Christov [10] also 
presented three indices to detect MI, there are i) maximum 
angle between QRS and T loop axes, ii) T axis elevation and 
azimuth angle difference, iii) ratio of maximum to mean T 
vector magnitudes. With the development of technology and 
signal processing techniques, there are different sophisticated 
computer-based interpretations in time, frequency or phase 
domain to capture the significant distinguishable features 
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from bio-signals [1, 2, 11, 12], for example, Ge [13] proposed 
that using the coefficients from multivariate autoregressive 
model via VCG signals to distinguish normal case, acute MI, 
sub-acute MI.  

 
 Fig 1. VCG signals from different views of human torso showing 
various coordinate axes [1, 4]. 
In practice, features of these references have their own 

characteristics, and therefore, all of these features have been 
considered as the features to detect MI. In this study, we 
combine these features from clinical, signal process and some 
features we proposed, which construct some signification 
diagnostic and underling hidden characteristics in the 
measured VCG loop between healthy and MI recordings,  as 
the feature sets and propose a classification system with some 
different types of classification methodology to identify 
normal (healthy) and abnormal (MI) subjects. 

II. VCG FEATURE EXTRACTIONS 
The MI detection of classification system requires feature 

extractions of VCG signals. A good recognition algorithm 
depends on the proper feature set representing the VCG 
signals, such as the difference of VCG waveforms between 
normal and abnormal VCG signals. This study presents some 
different features, which extracted by VCG signals, to identify 
MI or healthy subjects. As follow, some reference feature 
extractions have been briefly introduced as following: 

First, there are three types’ characteristic indices to detect 
myocardial infarction obtained from T-wave morphology of 
VCG signals, which had presented by Bortolan and Christov 
[10]. These features are i) maximum angle between QRS and 
T loop axes (RT angle), ii) T axis elevation and azimuth angle 
difference (EDA), and iii) Ratio of maximum to mean T 
vector magnitudes (RMMVt), respectively. 

Second, there are three diagnostic criteria of inferior 
myocardial infarction, which are obtained from the frontal 
plane of VCG signals, will be the feature set. These are i) 
Time from the 0 point to leftward X intercept and distance 
from the 0 point to leftward X intercept (XL), ii) A maximal 
frontal plane QRS vector (AM), and iii) A maximal superior 
deviation and a ratio of maximal superior deviation to 
maximal inferior deviation (Ratio of SD to ID) [5]. 

Third, the multivariate autoregressive (AR) model has been 
extensively applied for bio-signal modeling [13, 14]. Hence, 
multivariate AR coefficients will be including as VCG 

features. VCG signals for each subject can be represented by 
p×M2 multivariable AR coefficients, where p is the order of 
an M-channel multivariable AR model. According to the 
suggestions of [13], the AR model order of four had been 
selected. Hence, in this study 4×32=36 multivariable AR 
coefficient via 3-dimension VCG leads, hereinafter called AR 
coefficients. 

For understanding the process of heart rhythm on QRS 
complex and T waveform of VCG signals, third order moment 
(skewness coefficient) and fourth order moment (kurtosis 
coefficient) are proposed, and correlation coefficient of T 
wave and an upper semicircle curve is proposed as the degree 
of the inverse T wave. R-R interval (RRI) and Q-S interval 
(QSI) also are the important indices to describe the heart 
rhythm. Hence, the average and variance of RRI and QSI from 
a 6sec signal are considering as the features in this study. 
Table 1 is a simple description to understand the extractions of 
feature in this study. 

TABLE I 
FEATURE EXTRACTIONS FROM VCG SIGNALS 

Signal source Feature extraction 

VCG signal 

Multivariable AR coefficients [13] 
Ratio of maximum QRS vector 
magnitudes to T vector magnitudes 
RMMV [10]: 
1. QRS vector magnitudes  
2. T vector magnitudes 
Degree of the inverse T wave  

X-lead 
QRS complex 
T wave 

3st principal moment 
4st principal moment 
(above features are proposed in this study) 

Y-lead 
Z-lead 

Transverse plane (XZ) 
R-T peak angle [10] left sagittal plane (YZ) 

VCG  (XYZ) 

Frontal plane (XY plane) 

R-T peak angle [10] 
EDA [10] 
AM [5] 
Ratio of SD to ID [5] 
XL [5] 

Temporal domain 

Mean of RR interval (6 sec) 
Mean of QS interval (6 sec) 
Variance of RR interval (6 sec) 
Variance of QS interval (6 sec) 

 

III. PROPOSED CLASSIFICATION SYSTEM 
In this study, we propose a classification system to detect 

MI via VCG signals. In this system, first segmented 6 seconds 
signals from the collected VCG signals, and then detection of 
QRS and T is implemented. From the results of QRS and T 
detection, extracting the features, which have introduce in 
section II, as the input data for classifiers. According to the 
feature extractions, 64 features have been extracted. However, 
not all of features are significant useful in the classifier. 
Sequential forward (FFS) and backward (BFS) feature 
selection algorithms are applying to select the important 
features in feature selection. Finally, the classification 
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evolution is implemented. Figure 2 is the proposed 
classification system flowchart. 

 
Fig. 2 the flowchart of the VCG classification system 

There are four different types of classifier, two parametric 
and two nonparametric classifiers are applying to identify 
normal and abnormal subjects. Two parametric classifiers are 
maximum-likelihood classifier (MLC) and general linear 
model (GLM), respectively, and other two nonparametric 
classifiers are k nearest neighbor (k-NN) and support vector 
machine (SVM).  

MLC [15] is made up by maximum a posteriori (MAP) and 
assuming the samples following the multivariate normal 
distribution with mean vector iμ and covariance matrix i∑ of 
each class iω , 2,1=∀i . The decision of MLC can be 
expressed as equation (1): 

{ })()(lnln2minarg 11

}2,1{
iiiii

i

MLC
MAP p μxμx −∑−+∑+−= −−

=
ω   (1) 

where ip  is the priori probability of class iω . 
GLM [15] is a statistical parameter model based on 

estimating the coefficient set β of the linear model, and the 
model can be expressed as 

dd xxy βββ +++== ...110xβ                        (2) 

where y is the observe response and T
210 ],...,,,[ dββββ=β  is 

the estimator of coefficient of the linear model, which is 
estimated from training data and least square method. 

The conception of k-NN [15] is to find the set of k nearest 
neighbor in the training set for an input sample, and assign this 
sample to the most frequent class among this training set.  

SVM [16] is a binary classifier, and learning a separating 
hyperplane w  from support vectors in the feature space, also 
called Hilbert space, to maximize margins between two 
different classes, and it’s implementing by a kernel function.  

IV. EXPERIMENTAL DATA AND DESIGNS 
In his study, we adopted the benchmark VCG dataset in 

PTB database from PhysioNet (2006 QT Challenge) [17]. 
There are 448 VCG available recordings, including 80 
Healthy Controls (HCs) and 369 MIs. In this study, all VCG 
signals would be collected a segment 6 seconds signals, and 

feature extractions are implemented via these 6 seconds 
signals. For avoiding the incomplete heart loop in these 6 
seconds VCG signals, we removed first and end heart loop. 

For investigating the influence of different size of HCs, two 
datasets with different sizes of HC case are presented. One 
includes 369 MIs and 80 HCs, and the other one includes 369 
MIs and 240 HCs, which are resampling three times from 
different sections in 30 seconds VCG recording. Now making 
a brief summary about feature sets and classifications as 
follows: 

There are six feature sets and four classifiers were 
employed in the experiments. Six feature sets extracted from 
the references [10], [5], and [13], all of features from 
references and we proposed (simply named ALF), and the 
features selected from FFS and BFS, respectively. Four 
classifiers are MLC, k-NN, GLM, and SVM, respectively. 

For the investigation of classification performance 
evaluation, k-fold cross validation (k=10) and random 
subsampling methods were employed in this experiments. For 
each combination of the experiment, k-fold cross validation 
will repeat 100 times by the random subsampling methods to 
obtain the classification performance. The classification 
performances are evaluated based on four evaluation indices, 
which are sensitivity, specificity, positive predictive value 
(PPV), and overall accuracy, and the average and standard 
deviation of each index would be displayed. 

TABLE II 
EXPERIMENTAL DESIGNS 

PTB Dataset Feature sets Classifiers 
Dataset1 : 
368 MIs and 80 HCs 
Dataset 2: 
368 MIs and 240 HCs 

Reference [10] 
Reference [5] 

Reference [13] 
ALF, FFS, BFS 

MLC 
k-NN 
GLM 
SVM 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 
With combinations of experimental design, there are 48 

combinations. For a convenient reason, we only display the 
highest classification performance for each feature set and 
datasets. Table 3 and 4 are shown these results for dataset 1 
and 2, respectively. Note that shadow part and bold type 
indicates the best performance of each evaluation index. The 
number in bracket is the standard deviation. 

The following are some findings based on these results:  
1. According to the overall accuracy, the highest performance 

of all combinations is BFS+MLC, no matter in dataset 1 or 
dataset 2. 

2. The data size between MIs and HCs is a large imbalance 
(369:80) in dataset1, and hence, some classifiers can’t 
explicitly distinguish the difference between MIs and HCs 
precisely in training step. As the HC sample size increase, 
the classification performance represent ascending 
tendencies.  

3. The feature set, ALF, includes all the features. This feature 
set not only retains the advantages from references [5], [10], 
and [13], but also contains other different significant 
features. Hence, the performance from ALF is always 

Performance Evaluation 

QRS T detection 

Feature extraction 

VCG signals 

Segment a 6 sec VCG signals 

Feature selections 

Classifiers
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overcome other feature sets from reference. 
4. The BFS is implemented by the feature set, ALF. The 

advantage of BFS is a useful and significant portion of 
feature was reserved, and removing some trivial and 
insignificant portion of feature. From experiments, show 
that the features obtain from BFS can capture the higher 
performance. 

TABLE III 
THE BEST CLASSIFICATION PERFORMANCE OF EACH FEATURE SET WITH 

THE ASSOCIATED CLASSIFIER FOR DATASET 1. 
 Sensitivity Specificity PPV Accuracy 
Reference 
1+ MLC 87.19 (0.50) 71.58 (2.17) 93.38 (0.48) 84.40 (0.59) 

Reference 
2+ SVM 51.09 (0.53) 73.51 (1.34) 89.87(0.47) 55.10 (0.51) 

Reference 
3+ SVM 90.22 (0.98) 78.10 (1.80) 95.03 (0.41) 88.07 (0.95) 

ALF+ SVM 96.46 (0.41) 70.76 (1.93) 93.88 (0.37) 91.91 (0.37) 

FFS+SVM 96.29 (0.37) 71.01 (1.83) 93.92 (0.36) 91.82 (0.45) 

BFS+MLC 99.21 (0.20) 66.84 (3.31) 93.29 (0.63) 93.48 (0.69) 

TABLE IV 
THE BEST CLASSIFICATION PERFORMANCE OF EACH FEATURE SET WITH 

THE ASSOCIATED CLASSIFIER FOR DATASET 2. 
 Sensitivity Specificity PPV Accuracy 
Reference 
1+ SVM 78.66 (0.71) 88.75 (0.78) 91.47 (0.55) 82.64 (0.54) 

Reference 
2+ k-NN 64.04 (1.16) 62.88 (1.73) 72.58 (1.01) 63.59 (1.01) 

Reference 
3+ SVM 90.95 (0.87) 97.87 (0.50) 98.49 (0.36) 93.68 (0.68) 

ALF+ GLM 99.56 (0.15) 88.56 (1.57) 93.05 (0.89) 95.22 (0.61) 

FFS+MLC 97.49(0.36) 94.98 (0.59) 96.76 (0.37) 96.50 (0.36) 

BFS+MLC 99.89 (0.14) 92.51 (1.81) 95.35 (1.07) 96.96 (0.70) 

BFS+MLC 99.89 (0.14) 92.51 (1.81) 95.35 (1.07) 96.96 (0.70) 

VI. CONCLUSIONS 
This study proposed a classification system and a suit 

feature set to classify MI patterns. In order to measure the 
effectiveness of the feature sets, four classifiers are applying 
to identify the HCs and MIs. The experiments show the 
features selected from BFS with MLC provides a relatively 
high sensitivity 99.89% and standard deviation (0.14%) with a 
compromise of specificity 92.51% and standard deviation 
(1.81%), and the overall accuracy attain a high performance 
96.96% with small standard deviation 0.70%. In the future, 
more significant features have been surveyed for the 
classification system to detect heart diseases. 
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