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Abstract— The baseline wander is a low frequency additive
noise partially overlapping the band of ECG signal. This makes
its removal difficult without affecting the ECG. In this work
we propose a novel approach to baseline wander estimation
and removal based on the notion of quadratic variation. The
quadratic variation is a suitable index of variability for vectors
and sampled functions. We derive an algorithm for baseline
estimation solving a constrained convex optimization problem.
The computational complexity of the algorithm is linear in the
size of the ECG record to detrend, making it suitable for real-
time applications. Simulation results confirm the effectiveness
of the approach and highlight its ability to remove baseline
wander. Eventually, the proposed algorithm is not limited to
ECG signals, but can be effectively applied whenever baseline
estimation and removal are needed, such as EEG records.

I. INTRODUCTION

The electrocardiogram (ECG) is a non invasive measure
of the electrical activity of the heart recorded by skin
electrodes. During ECG measurements, electrical changes
on the patient’s skin are detected, amplified and registered.
The changes are caused by depolarization/polarization of the
heart muscle during each heart beat. The analysis of ECG
signals is commonly used as a diagnostic tool for detecting
cardiac diseases. Unfortunately ECG signal is contaminated
by several kinds of noise such as 50 or 60Hz power-line in-
terference, electromyographic noise and baseline wander [1].
This last is caused by fluctuations of the impedance between
electrodes and skin, patient’s movements and respiration.

The baseline wander is modeled as a low frequency
additive noise over the range 0÷0.8Hz, partially overlapping
the band of ECG signal [2]. The in-band nature of this type
of noise makes its removal difficult without affecting the
ECG. The simplest approach is to use high-pass filtering
with cutoff frequency of about 0.8Hz [3]. However, this is
not always viable, since it introduces distortions in the ECG
signal, particularly in the ST segment, thus impacting on the
diagnosis of some diseases like myocardial infarction and
ischemia [4].

To overcome this problem, more sophisticated approaches
have been proposed in the literature. These include adaptive
filtering [5], wavelets [6] and baseline estimation [7], [8]. In
[5] a two-stage adaptive filter is proposed. The first stage
is an adaptive transversal high-pass filter that removes fre-
quency components below 0.3Hz. The second stage removes
the frequency components higher than 0.3Hz that are not
correlated with QRS complexes. Wavelet approaches [6]
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decompose the signal into levels and adaptively filter only
those levels directly affected by baseline drift. Other major
approaches resort to piecewise cubic splines [7] or linear
interpolation [8] between consecutive pre-known isoelectric
levels estimated from PR intervals [9]. However, the perfor-
mance of these methods strongly depends on the reliability of
the selected fiducial points and decays in case of bradycardia,
tachycardia, or rapid changes in the baseline, i.e., when
fiducial points are difficult to find [10].

In this work we propose a novel approach to baseline
wander estimation and removal, based on the concept of
quadratic variation reduction. The rationale behind this
approach is described in Section II. The baseline wander
estimator is derived in Section III as the solution to a
convex optimization problem. Section IV and V follow with
simulation results and conclusions.

II. RATIONALE

As highlighted in the previous section, baseline wander
noise is an additive low1 “variability” component affecting
the measured ECG. Thus, provided that we introduce a
suitable index of “variability”, baseline can be estimated
searching for the low variability component closest, in some
sense, to the measured ECG. Then, the estimated baseline
can be subtracted from the measured ECG. In the following,
we make this idea precise.

The variability of a generic vector can be quantified
introducing the following

Definition 1: Given a vector x = [x1 · · ·xn]T ∈ Rn, the
quadratic variation of x is defined as

[x]
.
=

n−1∑
k=1

(xk − xk+1)
2 (1)

and is denoted by [x].
The quadratic variation is a well-known property used

in the analysis of stochastic processes [11]. However, in
this context we consider it as a function of deterministic
or random vectors.

Introducing the (n− 1)× n matrix

D =


1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . . . . . . . . 0
0 · · · 0 1 −1

 , (2)

1Low with respect to ECG “variability”.
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the quadratic variation of x can be expressed as

[x] = ‖Dx‖2 , (3)

where ‖·‖ denotes the Euclidean norm.
The quadratic variation is a consistent index of variability

and its use is motivated by the following property. For vectors
affected by additive noise, on average it does not decrease
and is an increasing function of noise variances. In fact, let
x = x0 + w, where x0 is a deterministic vector and w =
[w1 · · ·wn]T is a zero-mean random vector with covariance
matrix Kw = E

{
wwT

}
. We do not make any assumption

about the distribution of w, so the following considerations
hold regardless of the statistics of the noise. Computing the
average quadratic variation of x we get

E
{
‖Dx‖2

}
= ‖Dx0‖2 + E

{
tr
(
DwwTDT)}

= ‖Dx0‖2 + tr
(
DKwD

T) (4)

where, in the first equality, we have exploited the invari-
ance of the trace under cyclic permutations. Note that
tr
(
DKwD

T) ≥ 0, since it is the trace of a positive semidef-
inite matrix [12], but in all practical cases the inequality is
strict. In fact, we have

tr
(
DKwD

T) = n−1∑
k=1

E
{
(wk − wk+1)

2
}

=

n−1∑
k=1

(
σ2
k + σ2

k+1 − 2σk,k+1

)
(5)

where σ2
k = E

{
w2
k

}
and σk,k+1 = E {wkwk+1}. From

(5) follows that tr
(
DTDKw

)
= 0 if and only if all the

components of the noise vector w are almost surely equal2

and that E
{
‖Dx‖2

}
is an increasing function of noise

variances.
The next section is devoted to the development of an effi-

cient algorithm for baseline removal exploiting the concept
of quadratic variation.

III. BASELINE ESTIMATION AND REMOVAL

In this section, we denote by z̃ the vector collecting n
samples of a measured ECG record, i.e., one that is affected
by baseline wander, by x the vector of estimated baseline,
and by z = z̃ − x the corresponding ECG vector after
baseline removal. Following the line of reasoning presented
in the previous section, we propose to estimate the baseline
x solving the following optimization problem{

minimize ‖x− z̃‖2

subject to ‖Dx‖2 ≤ ρ
(6)

where D is defined in (2) and ρ is a nonnegative constant
that controls the quadratic variation of the estimated baseline.
Its value is chosen in accordance with the peculiarity of the
problem and satisfies ρ < ‖Dz̃‖2 in order to avoid trivial

2That is w1 = w2 = · · · = wn with probability 1.

solutions.3 Note that we do not need to know in advance the
appropriate value for ρ in any particular problem. In fact, as
it will be clear later, the solution to the optimization problem
(6) can be expressed in terms of a parameter that controls the
quadratic variation of the solution and that is related to the
value of ρ in (6). In this way, baseline can be estimated
without caring about ρ in the constraint ‖Dx‖2 ≤ ρ,
and reducing parametrically the quadratic variation of the
solution x to the desired level.

Let us consider (6) in more detail. It is a convex op-
timization problem, since both the objective function and
the inequality constraint are convex. As a consequence, any
locally optimal point is also globally optimal [13]. Moreover,
since the objective function is strictly convex and the problem
is feasible, the solution exists and is unique. It is possible to
prove that the solution to (6) is given by

x =
(
I + λDTD

)−1
z̃ (7)

where I denotes the identity matrix, and λ is a nonnegative
parameter determined by

‖Dx‖2 =
∥∥∥D (I + λDTD

)−1
z̃
∥∥∥2 = ρ. (8)

Note that in (7) the inverse exists for any λ ≥ 0. It
is interesting that the solution to (6) is a linear operator
acting on z̃. Moreover, the parameter λ controls the quadratic
variation of the solution x, i.e., the degree of variability of
the estimated baseline. In fact, it is possible to prove that
[x] is a continuous and strictly decreasing function of λ for
λ ∈ [0,+∞) regardless of z̃, provided that z̃ is not a constant
vector.4 This is equivalent to say that (8), when z̃ is not
a constant vector, establishes a one-to-one correspondence
between λ ∈ [0,+∞) and ρ ∈

(
0, ‖Dz̃‖2

]
, with λ = 0

corresponding to ρ = ‖Dz̃‖2 and

lim
λ→+∞

ρ = lim
λ→+∞

∥∥∥D (I + λDTD
)−1

z̃
∥∥∥2 = 0 , (9)

which holds true regardless of z̃ ∈ Rn.
A consequence of this is that we do not need to know in

advance the value of ρ in (6), since baseline can be estimated
according to (7) and λ can be adapted to the particular
problem or to fulfill some performance criterion. That is,
λ is used in place of ρ as the controlling parameter.

In particular, since baseline is characterized by low values
of the quadratic variation with respect to the ECG signal, it is
estimated with (7) using large values of λ. In our simulations
values of the order of 104 or even more are quite common.

Based on this fact, it is worthwhile considering the be-
havior of the solution (7) in the limit for λ → +∞. It is
possible to prove the following result

lim
λ→+∞

(
I + λDTD

)−1
z̃ =

1

n
1Tz̃ =

1

n

n∑
k=1

z̃k , (10)

3When ρ ≥ ‖Dz̃‖2 the solution is x = z̃ and baseline coincides with
the measured ECG.

4If z̃ is a constant vector [x] = [z̃] = 0 regardless of λ. However, this
is impossible for a vector representing an ECG record.
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where 1T = [1 · · · 1] is the n−size constant unit vector and
z̃k is the k−th component of z̃.

The asymptotic solution in (10) corresponds to the mean
value of z̃, which is the constant vector closest in the l2 norm
to the measured ECG. Consistently with (9) such a constant
vector has zero quadratic variation.

As λ ranges from 0 to +∞ solution (7) captures com-
ponents of the measured ECG z̃ with decreasing quadratic
variation. When λ → +∞ such components reduce to the
constant in (10), whereas when λ is finite more complex
trends of the measured ECG are captured.

Once the baseline has been estimated, it can be removed
from the measured ECG by subtraction

z = z̃ − x =
[
I −

(
I + λDTD

)−1]
z̃ (11)

=DT
(
1

λ
I +DDT

)−1
Dz̃ , (12)

where in the last equality the Sherman-Morrison-Woodbury
formula [12] has been applied.

It is important to consider the computational aspects re-
lated to baseline estimation through the proposed algorithm,
since matrix inversion is involved in (7). When the size of
vector z̃ is large, as it is the case for typical ECG records,
the computational burden, both in terms of time and memory,
and the accuracy become serious issues, even for batch
processing.

It is possible to prove that baseline estimation using (7) can
be performed with complexity O(n), i.e., linear in the size
of vector z̃. This property is very important and makes the
proposed algorithm suitable also for real-time applications.
Just to give an idea of how fast the algorithm is, a MATLAB
(ver. 7.11) implementation of (7) running over a PC equipped
with 2.5GHz Core 2 Duo processor, takes about 0.84 s to
estimate the baseline from an ECG record of 107 double
precision floating point samples.

Eventually, it is worthwhile noting that the algorithm we
propose is not limited to ECG, but can be applied in very
general situations, whenever baseline estimation and removal
are needed. This is due to the fact that the formulation and the
rationale behind it, i.e., quadratic variation reduction, have
general validity. In this regard, we successfully applied it
also to EEG recordings.

IV. SIMULATION RESULTS

The performance of the proposed algorithm has been
investigated both on real and simulated ECG traces.

As for real signals, we considered ECG traces from
the MIT-BIH Normal Sinus Rhythm Database [14] freely
available on Physionet. This database includes 18 long-term
ECG recordings of subjects with no significant arrhythmias.
Signals were acquired at a sampling frequency of 128Hz
with 12−bit resolution. Figure 1 reports a 40 s segment of
the record nsrdb/16272 and Figure 2 shows the same record
after baseline wander removal using the proposed algorithm
with λ = 104. A visual and qualitative comparison of

Fig. 1. ECG record from real data.

Fig. 2. ECG record of Figure 1 after baseline wander removal with the
proposed algorithm.

the two figures highlights how quadratic variation reduction
technique managed to correctly detrend the ECG signal.
Undesired wandering due to baseline has been removed
without any visible distortion of the original signal.

In order to quantify the performance of the proposed
method we carried out a quantitative analysis on simulated
ECG signals affected by synthetic baseline wander. Moreover
we compared the performance of our algorithm versus the
baseline removal algorithm based on cubic spline interpola-
tion described in [7]. As a performance metric we considered
the squared Euclidean distance

d2(x, ξ) = ‖x− ξ‖2 (13)

between the synthetic baseline wander, denoted by ξ, and
the corresponding estimated one x.

The synthetic baseline-free ECG signal, denoted in the
following by z0, was generated according to the model
described in [15], setting the sampling frequency to 1024Hz,
the heart rate to 60 bpm and including zero mean additive
Gaussian noise with standard deviation σ = 0.03. Synthetic
baseline wander ξ was rendered as Gaussian white noise with
standard deviation σ = 20 low-pass filtered with bandwidth
0.8Hz in order to include drift due to respiration and motion
artifacts.
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Fig. 3. Synthetic ECG signal (upper panel) with added known baseline
wander (lower panel).

Fig. 4. ECG in lower panel of Figure 3, after baseline wander removal
with cubic splines (upper panel) and with the proposed algorithm (lower
panel).

Figure 3 reports the synthetic baseline-free ECG signal
z0 (upper panel) and the corresponding corrupted one z̃ =
z0 + ξ (lower panel) with synthetic baseline added. The
upper panel of Figure 4 shows the detrended ECG record
zcs = z̃ − xcs after baseline estimation5 with cubic spline
interpolation following [7]. The lower panel of Figure 4
reports the detrended ECG record zqv = z̃ − xqv after
baseline estimation according to the proposed algorithm.
Here λ = 1.3 × 104, which corresponds to the value that
entails the minimum d2(xqv, ξ).

As can be seen in Figure 4, the quadratic variation
reduction method is more effective in baseline wander re-
moval. In the upper panel of Figure 4, indeed, a residual
baseline drift is still present, whereas in the lower panel,
where the proposed algorithm has been used, the isoelectric
levels are better aligned. This is confirmed by the values
assumed by the figure of merit (13) in this case: the cu-
bic spline interpolation method gives d2(xcs, ξ) = 40.51,
whereas the proposed algorithm returns a significantly lower
d2(xqv, ξ) = 18.66.

5We denote by xcs the baseline estimated with cubic spline interpolation
and by xqv the one estimated with our algorithm.

V. CONCLUSIONS

In this work we considered the problem of baseline wander
estimation and removal, in particular for ECG signals. We
proposed a novel approach based on the notion of quadratic
variation reduction. We derived the algorithm for baseline
wander estimation solving a constrained convex optimization
problem. The algorithm is remarkably fast, since its compu-
tational complexity is linear in the size of the ECG record
to detrend. This makes it perfectly suitable for real-time
applications. Simulation results, both on real and simulated
data, confirm the effectiveness of the approach and highlight
its ability to remove baseline wander.

Eventually, it is worthwhile noting that the proposed
algorithm is not limited to ECG signals, but can be effec-
tively applied whenever baseline estimation and removal are
needed. In this regard, we successfully applied it also to EEG
traces.
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