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Abstract— Atrial fibrillation (AF) is a common cardiac ar-
rhythmia related to irregular atrial contractions. Several studies
have shown that the analysis of P-waves extracted from ECG
signals is helpful in understanding the predisposing factors to
AF. However, P-waves are usually highly corrupted by noise
and harmonic artifacts and this makes quite difficult their
analysis. Recently we proposed a novel algorithm for denoising
P-waves based on the notion of quadratic variation reduction.
It is quite good in denoising P-waves affected by noise, but its
effectiveness reduces when it is used in filtering out harmonic
artifacts, like power-line interference. In this paper we propose
an algorithm that overcomes this limitation and extends our
previous method allowing it to both denoise and reject harmonic
artifacts. Simulation results confirm the effectiveness of the
approach and highlight its ability to remove both noise and
artifacts. The algorithm has reduced computational complexity
and this makes it suitable for real-time applications.

I. INTRODUCTION

The electrocardiogram (ECG) is a measure of cardiac
electrical activity generated by depolarization/polarization
of the heart muscle during each heart beat. In healthy
patients, each beat of the ECG trace consists of a P-wave
(atrial depolarization), a QRS complex (left and right ven-
tricles depolarization), a T-wave (ventricles repolarization)
and sometimes a U-wave. The correct registration of such
waves is fundamental to detect diseases as well as to monitor
patients’ status. Unfortunately ECG signals are susceptible
to electromagnetic interferences and can be contaminated
by several kinds of noise such as 50 or 60Hz power-line
interference, electromyographic noise and baseline wander
[1]. The power-line interference is a common noise com-
ponent caused by supply plugs and cables, and sometimes
can mask ECG signals, especially the segments having
low amplitude like P-waves [1]. Variability in the power-
line frequency of about a fraction of Hertz and non-linear
transformations operating on signals can make unfeasible
the use of simple notch filters for power-line noise removal
[2]. Using a band-stop filter does not help in this regard,
since it induces distortions in ECG signals and impacts the
correct delineation of waves, especially when the power-
line frequency is highly variable [3], [4]. Some approaches
to power-line noise removal resort to an external reference
signal for adaptive cancellation [5].

Atrial Fibrillation (AF) is the most common arrhythmia
encountered in the clinical practice and is characterized by
irregular and non homogeneous atrial contractions. AF is not
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a mortal disease but can favor the formation of thrombus
at risk to embolize. Several studies show that AF can be
detected and predicted analyzing P-waves extracted from
ECG traces [6]–[9]. Due to the low signal-to-noise ratio
associated with P-waves, this portion of ECG is usually ana-
lyzed performing averaging and building a P-wave template
[10]. Then, morphological features are extracted from the
template. This approach provides a robust measure of the
persistent atrial activity but has the unavoidable drawback
of losing information on the single beat. However, tracking
changes between P-waves is extremely important in improv-
ing understanding of the pathophysiological mechanisms of
atrial substrates predisposing to AF [9]. Indeed, each P-
wave provides important information about the correspond-
ing depolarization pattern throughout the atrial substrate. The
analysis of temporal variability of P-waves is possible only if
reliable beat-to-beat P-waves are available. This is attainable
only when noise and artifacts are effectively removed from
each P-wave.

The aim of this investigation is to propose a novel method
to denoise heavily corrupted P-waves extracted from ECG
recordings, in order to improve their signal-to-noise ratio and
allow the robust study of their variability.

II. RATIONALE

A. The quadratic variation

From the previous section, it is evident that the ability to
conduct a meaningful analysis of predisposing factors to AF
strongly depends on the availability of reliable P-waves. In
this regard, P-waves are reliable if the detrimental effects of
noise and artifacts are reduced to an acceptable level.

In the recent work [11], we proposed a novel algorithm
that proved being quite good in smoothing P-waves. Its
effectiveness reduces when it is used in filtering out harmonic
artifacts, like power-line interference. To overcome this lim-
itation, in this paper we propose an algorithm that extends
our previous approach and allows to both denoise and reject
harmonic artifacts in P-waves. It is based on the following
idea. The measured P-wave is affected by noise and artifacts
whose effect is to introduce additional “variability” into the
observed P-wave with respect to the true one. Thus, provided
that we introduce a suitable index of variability, denoising
can be performed by searching for a version of the P-wave
that is close, in some sense, to the observed one, but has less
“variability”. In the following we make this idea precise.

The variability of a generic vector can be quantified
introducing the following
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Definition 1: Given a vector x = [x1 · · ·xn]T ∈ Rn, the
quadratic variation of x is defined as

[x]
.
=

n−1∑
k=1

(xk − xk+1)
2 (1)

and is denoted by [x].
The quadratic variation is a well-known property used

in the analysis of stochastic processes [12]. However, in
this context we consider it as a function of deterministic
or random vectors.

Introducing the (n− 1)× n matrix

D =

 1 −1
. . . . . .

1 −1

 , (2)

the quadratic variation of x becomes [x] = ‖Dx‖2, where
‖·‖ is the Euclidean norm.

The quadratic variation is a consistent index of variability
and its use is motivated by the following property. For
vectors affected by additive noise, on average it does not
decrease and is an increasing function of noise variances. In
fact, let x = x0 + w, where x0 is a deterministic vector
and w = [w1 · · ·wn]T is a zero-mean random vector with
covariance matrix Kw = E

{
wwT

}
. We do not make any

assumption about the distribution of w, so the following
considerations hold regardless of it. Computing the averaged
quadratic variation of x we get

E
{
‖Dx‖2

}
= ‖Dx0‖2 + tr

(
DKwD

T) . (3)

Note that tr
(
DKwD

T) ≥ 0, since it is the trace of a
positive semidefinite matrix [13], but in all practical cases
the inequality is strict. In fact, we have

tr
(
DKwD

T) = n−1∑
k=1

(
σ2
k + σ2

k+1 − 2σk,k+1

)
(4)

where σ2
k = E

{
w2
k

}
and σk,k+1 = E {wkwk+1}. From

(4) follows that tr
(
DTDKw

)
= 0 if and only if all the

components of the noise vector w are almost surely equal1

and that E
{
‖Dx‖2

}
is an increasing function of noise

variances.
For example, in typical scenarios w = m+a, where m is

due to white Gaussian noise whereas a is due to the residual
50Hz or 60Hz power-line noise. We may assume m ∼
N
(
0, σ2

mI
)

and a = [a1 · · · an]T vector of samples from
a harmonic process, i.e., ak = A cos

[
2π f0Fc

(k − 1) + φ
]
,

with A and φ independent, φ uniformly distributed in [0, 2π),
f0 ∈ {50Hz, 60Hz} and Fc being the sampling frequency.
Moreover m and a are independent. In this case it is easy
to verify that

tr
(
DKwD

T) =
=

2 ‖x0‖2 (n− 1)

n

[
SNR−1 + 4 sin2

(
π
f0
Fc

)
SIR−1

]
(5)

1That is w1 = w2 = · · · = wn with probability 1.

where SNR = ‖x0‖2/nσ2
m denotes the signal-to-noise ratio

and SIR = 2‖x0‖2/nE{A2} is the signal-to-interference ratio,
considering the power-line noise as interference. From (5) it
is evident that the average quadratic variation is a decreas-
ing function of SNR and SIR. This supports the rationale
behind quadratic variation reduction as a viable criterion for
noise reduction. However, in (5) the SIR−1 is multiplied by
4 sin2 (πf0/Fc) that is less than 1 when f0/Fc < 1/6. For
example, when f0 = 60Hz and Fc = 2048Hz it is about
3×10−2. As a result, low-frequency harmonic artifacts tend
to be less attenuated in response to a quadratic variation
reduction. Thus, extra conditions must be considered for
harmonic artifact rejection.

B. Harmonic artifacts rejection

The approach proposed to effectively reject harmonic arti-
facts is to exploit quadratic variation reduction in conjunction
with an additional requirement. The requirement is to make
negligible the energy content of harmonic artifacts in the
denoised signal.

To quantify it, denote by x ∈ Rn a generic n−size real
vector and let

X = Wx

be its DFT [14], where W = [wh,k] is the DFT matrix, with
wh,k = 1√

n
exp{−j2π(h − 1)(k − 1)/n}, h, k = 1, . . . , n.

Now, denote by W̃ the matrix obtained stacking the rows
of W corresponding to the harmonic components that we
want to reject. Note that since x is a real vector, symmetries
occur in its DFT [14] and rows have to be matched in pairs
in general.2 Matrix W̃ has dimensions m× n, with m < n
in general. The quadratic form∥∥∥W̃x

∥∥∥2 = xTW̃
H
W̃x = xTRe

{
W̃

H
W̃
}
x (6)

quantifies the energy content of the harmonic artifacts. In (6)
(·)H denotes the transpose conjugate and Re {·} is the real
part.

In the next section we exploit these results and develop
an effective algorithm for smoothing P-waves. Smoothing is
meant as joint denoising and harmonic artifacts rejection.

III. SMOOTHING P-WAVES

In this section we denote by p the vector collecting
samples from the measured P-wave, the one that is affected
by noise and artifacts, and by x the corresponding vector
after smoothing. Following the line of reasoning presented
in the previous section, we determine x solving the following
optimization problem

minimize ‖x− p‖2

subject to ‖Dx‖2 ≤ a
‖W̃x‖2 ≤ b

(7)

where D is defined in (2), W̃ in the previous section and
a and b are positive constants controlling the degree of
smoothness for p. Their values are chosen in accordance

2Apart from some special cases where single rows are taken.
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with the peculiarity of the problem and satisfy a < ‖Dp‖2
and b < ‖p‖2 in order to avoid trivial solutions.3 Note that
we do not need to know in advance the appropriate values for
a and b in any particular problem. In fact, as it will be clear
later, the solution to the optimization problem (7) can be
expressed in terms of two parameters controlling the degree
of smoothness, i.e., the quadratic variation of the solution
and the energy of artifacts. These parameters are related to
the values of a and b in (7). In this way, smoothing can
be performed without caring about a and b, by reducing
parametrically the quadratic variation of the solution and
the energy of artifacts to the desired levels. In general, the
optimal values for the controlling parameters can be found
as the ones that entail the maximum SNR gain.

Let us consider (7) in more detail. It is a convex op-
timization problem, since both the objective function and
the inequality constraints are convex. As a consequence, any
locally optimal point is also globally optimal [15]. Moreover,
since the objective function is strictly convex and the problem
is feasible the solution exists and is unique. It is possible to
prove that the solution to (7) is given by

x =
(
I + λDTD + νRe

{
W̃

H
W̃
})−1

p (8)

where I is the identity matrix and λ and ν are nonnegative
parameters determined by

‖Dx‖2 = a and ‖W̃x‖2 = b . (9)

Note that in (8) the inverse exists for any λ ≥ 0 and ν ≥ 0
and when λ = ν = 0 no smoothing is performed. It is
interesting that the solution to (7) is a linear operator acting
on p. Moreover, the parameters λ and ν control the degree
of smoothing applied to p. In particular, even though λ and
ν interact, λ mainly controls the quadratic variation of the
solution, i.e., the reduction of wideband noise, whereas ν
mainly controls the degree of rejection of harmonic artifacts.

A consequence of this is that we do not need to know in
advance the value of a and b in (7), as smoothing can be
performed according to (8) and λ and ν can be adapted to
fulfill some performance criteria. For example, considering
the SNR gain4 as a performance index, λ and ν can be chosen
to achieve the maximum gain.

Finally, some remarks on the computational aspects related
to the smoothing operation, since matrix inversion is involved
in (8). If the size of vector p is large enough, computational
problems may arise. Actually this is not an issue for the typi-
cal length of vectors representing P-waves, even considering
high sampling frequencies. However, when the size of vector
p is large, as for whole ECG records, the computational
burden, both in terms of time and memory, and the accuracy
become serious issues, even for batch processing.

In this regard, the proposed algorithm behaves favor-
ably. It is possible to prove that smoothing using (8) can

3When a ≥ ‖Dp‖2 and b ≥ ‖p‖2 the solution is x = p and no
smoothing is performed.

4This is the ratio between the SNR after and before smoothing.
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Fig. 1. Noiseless reference P-wave (blue) and noisy P-wave (red).

be performed with complexity O(n log n) (or O(n) when
ν = 0), where n is the size of vector p. This property
is very important and makes it suitable also for real-time
applications. Just to give an idea of how fast the proposed
algorithm is, a MATLAB (ver. 7.11) implementation of (8)
with ν > 0 running over a PC equipped with 2.5GHz Core 2
Duo processor, takes about 0.56 s to smooth an ECG record
of 106 double precision floating point samples.

IV. SIMULATION RESULTS

In this section we test the performance of the proposed
algorithm using a reference noiseless model of P-wave. This
has been extracted from a synthetic ECG trace generated
using the model described in [16]. The P-wave segment has
a duration of 200ms and has been sampled at 2048Hz. The
corresponding samples have been collected in the vector p0.
Then, such a reference P-wave p0 has been corrupted by
additive noise and harmonic artifacts, denoted by w and d
respectively.

The components of w are independent identically dis-
tributed zero mean Gaussian random variables with variance
σ2
w such that SNR = 10 log ‖p0‖

2

n·σ2
w

= 2 dB, where n is the
length of p0. Concerning harmonic artifacts d, we considered
three sine waves with random phases at frequencies 60Hz,
80Hz and 120Hz respectively. The sine waves at 60Hz
and 120Hz account for the first and second harmonics of
the power-line noise, whereas the 80Hz sine wave is a
generic harmonic interference. Magnitudes of the waves at
frequencies 60Hz and 80Hz have been chosen to be the
same, whereas magnitude of the sinusoid at frequency 120Hz
has been set to half. The resulting signal-to-interference ratio
SIR = 10 log ‖p0‖

2

‖d‖2 was chosen to be 1.5 dB.
Thus, the corresponding noisy P-wave is

p = p0 +w + d (10)

and is characterized by a signal-to-noise-plus-interference ra-
tio SNIR0 = 10 log ‖p0‖

2

‖w+d‖2 = −1.3 dB. Figure 1 shows the
noiseless reference P-wave p0 in blue and the corresponding
noisy P-wave p of (10) in red.

In Figure 2 we report the reference model (p0, in blue) and
the reconstructed wave (x̃, in red) resulting from a partial
smoothing which reduces the quadratic variation of the noisy
wave but not the energy of harmonic artifacts, i.e., ν = 0 in
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Fig. 2. Reference P-wave p0 (blue) and reconstructed P-wave after partial
smoothing x̃ (red).
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Fig. 3. Reference P-wave p0 (blue) and smoothed P-wave x (red).

(8). The parameter λ = 524 was chosen in order to minimize
the Euclidean distance ‖x̃− p0‖, where x̃− p0 is the error
vector with respect to the reference model p0. Although the
SNIR in p is quite low, the partial smoothing with ν =
0 and λ = 524 is very effective in denoising p and the
resulting wave x̃ may be considered a good approximation
of p0. Indeed, measuring the performance of the proposed
algorithm in terms of SNIR gain

GSNIR = SNIRS − SNIR0 = 10 log
‖w + d‖2

‖x̃ − p0‖2
(11)

where SNIRS is the SNIR after smoothing and SNIR0 is the
SNIR before smoothing, for these realizations of noise and
harmonic interferences we obtain GSNIR = 20.7 dB.

Nevertheless, to reduce the residual oscillatory behavior in
x̃, we considered the combined action of ν and λ. In Figure
3 we compare the reference P-wave p0 (in blue) and the
denoised P-wave x (in red) resulting from smoothing with ν
and λ such as to minimize the Euclidean distance ‖x− p0‖.
Here, the smoothing makes it hard to distinguish between
the two waves. The resulting gain is GSNIR = 44.3 dB,
considering the same realizations of noise and harmonic
interferences of Figure 2.

Eventually, it is important to point out that we evaluated
the proposed algorithm on different models of P-wave,
realizations of noise and disturbance vectors. The resulting
gains were all consistent with the ones reported in this work.

V. CONCLUSIONS

In this work we considered the problem of noise and
harmonic artifacts removal in the P-wave segment of ECG

signals. The proposed approach is based on the notion of
quadratic variation meant as a suitable index of variability
for vectors or sampled functions. We developed an efficient
smoothing algorithm, which is the closed-form solution
to a constrained convex optimization problem. Denoising
and harmonic artifacts rejection are achieved by reducing
the quadratic variation and the artifacts energy content of
the noisy P-waves. The filtered P-wave is obtained as the
wave closest to the original one but with reduced quadratic
variation and artifact energy content. The computational
complexity of the algorithm is O (n log n) in the size n of
the vector to be processed, and this makes it suitable for
real-time applications. The algorithm is controlled by only
two parameters allowing an easy setup. Simulation results
confirm the effectiveness of the approach and highlight its
ability in reducing both noise and harmonic artifacts.

The low complexity of the algorithm makes it suitable
for processing longer signal records. In this regard we
successfully applied it also to unsegmented ECG and EEG
traces.
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