
  

  

Abstract—Tikhonov regularization is one of the most widely 

used regularization approaches in literature to overcome the 

ill-posedness of the inverse electrocardiography problem. 

However, the resulting solutions are biased towards the 

constraint used for regularization. One alternative to obtain 

improved results is to employ multiple constraints in the cost 

function. This approach has been shown to produce better 

results; however finding appropriate regularization parameters 

is a serious limitation of the method. In this study, we propose 

estimating multiple regularization parameters using a genetic 

algorithm based approach. Applicability of the approach is 

demonstrated here using two and three constraints. The results 

show that GA based multiple constraints approach improves 

the Tikhonov regularization solutions. 

I. INTRODUCTION 

nverse problem of electrocardiography (ECG) can be 

described as the estimation of cardiac electrical sources 

(for example, the epicardial potential distributions) using the 

body surface potential measurements (BSPMs). The cardiac 

electrical source distributions provide useful information 

about the functioning of the heart. However, the inverse 

ECG problem is ill-posed; even small amount of noise in the 

measurements causes unbounded errors in the solutions. To 

overcome this drawback, various regularization methods 

have been applied in literature; Tikhonov regularization [1], 

truncated singular value decomposition [2], Bayesian 

Maximum A Posteriori  (MAP) Estimation [3], Kalman 

Filtering [4], [5], [6] are some of the methods used for 

regularizing the inverse ECG problem.  

 In Tikhonov regularization, which is one of the most 

widely used approaches, one tries to reach a trade-off 

between a good fit to the measurements and the a priori 

information about the solution. This trade-off is achieved 

using a regularization parameter, which is usually found 

using the L-curve approach [7], [8]. In most of the previous 

applications of Tikhonov regularization, researchers used a 

single spatial constraint, such as the energy, the gradient, or 

the Laplacian of the epicardial potentials. But using a single 

constraint causes the solution to be effected by the choice of 

this constraint. One alternative is to use more than one 

constraint with the aim of combining advantages introduced 
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by each constraint, and reducing the effects of their 

disadvantages. 

Admissible solution method [9] and multiple constraints 

method [10] have been proposed to include more than one 

constraint in the solution. In the latter approach, each 

constraint is included in the cost function of the Tikhonov 

regularization via a separate regularization parameter. 

Although theoretically it is possible to include a large 

number of constraints in this approach, finding appropriate 

regularization parameters is a limitation of this study. 

Brooks et.al. used two constraints, and found the 

corresponding regularization parameters using L-surface, 

which is an extension of the L-curve method [10]. Adding a 

second constraint improved the results, but extending the L-

surface to include more than two constraints is not a 

practical approach. In this study, we propose the use of 

Genetic Algorithm (GA) to estimate the optimum 

regularization parameters, then we solve the inverse ECG 

problem using the multiple constraints approach of [10]. GA 

has been used to estimate the epicardial potentials in the 

inverse ECG literature [11], [12]. However, we use GA to 

estimate only the regularization parameters; hence the 

number of unknowns decreases significantly.  

II. METHODS 

A. Problem Definition 

The relation between the BSPMs and the epicardial 

potentials can be written as,  
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where k is the time instant, 
Mx1)( Ry ∈k  is the vector of 

BSPMs, 
Nx1)( Rx ∈k  is the vector of epicardial potentials, 

MxNRA∈  is the forward transfer matrix, and 
Mx1)( Rn ∈k  denotes the measurement noise.  The aim is to 

estimate )(kx  from the torso potentials. 

B. Regularization Approaches 

 1) Tikhonov Regularization: In this approach, the solution 

is found by minimizing the cost function: 
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where R is the spatial regularization matrix and � is the 

regularization parameter. The corresponding solution is then,  
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 There are various methods proposed in literature to 

calculate an optimum � value such as Composite Residual 

and Smoothing Operator  (CRESO) [13], Generalized Cross-

Validation (GCV) [14], and the most widely used L-curve 

approach [7], [8]. 

 

2) Multiple Constraints Approach: In this approach, the 

cost function in (2) is extended to include more than one 

spatial and/or temporal constraint. The new generalized cost 

function is [10]: 
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Here, tilde over the vectors and matrices specifies the 

augmented problem, in which all equations in (1) for all time 

instants are combined into a single matrix equation as 

described in [10]. �� �
 
and ���

 
are the spatial and the temporal 

regularization matrices, and �� and �� are the corresponding 

regularization parameters. The inverse problem is solved by 

the diagonalization method introduced in [10]. 

In [10], two spatial constraints, and one spatial - one 

temporal constraint were employed to solve the inverse 

problem. Corresponding regularization parameters were 

found from the L-surface approach. However, the L-surface 

approach could not be trivially extended to employ more 

than two constraints. 

 3) GA-based Regularization Parameter Estimation: GA is 

an optimization method that mimics the mutation and cross-

over processes in biological organisms [15]. It starts with a 

population of randomly generated chromosomes (i.e. the 

regularization parameters), which is called the initial 

population. In each generation, chromosomes in the 

population are evaluated by first estimating the inverse 

solution for each chromosome, then calculating a fitness 

function for those solutions. Depending on their fitness 

function values, they are rated for their success as possible 

solutions. A new population of chromosomes is formed 

using random selection mechanisms crossover and mutation 

based on this evaluation. In our problem, real coded genetic 

algorithm [15] is used, which means that the chromosomes 

are modeled as real values, and real valued mutation and 

cross-over are used to obtain new generations. The initial 

chromosomes are selected randomly from a confidence 

region; the chromosome size depends on the number of 

constraints used in the solution. For example, for a solution 

with two constraints, the corresponding chromosome has 

two components, each corresponding to one of the two 

regularization parameters. 

The fitness function is an important feature for the success 

of the GA. We modified (5) and used it as the fitness 

function in our GA method: 
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This fitness function is defined for the case with one spatial 

and one temporal constraint, where 	 and 
 are the 

corresponding regularization parameters. It can be easily 

modified to include any number of different constraints. We 

wanted to avoid solutions with very small norms, therefore 

we added divisions by �x�� in the first two components of the 

fitness function; solutions with very small norms would 

produce a large value for  �x��� , therefore the fitness 

function value would increase. On the other hand, solutions 

with large ������� values would also produce large fitness 

function values due to the last two norms. The chromosomes 

with large fitness function values would be considered as 

bad chromosomes. The algorithm would continue to search 

for the best chromosomes that generate the smallest fitness 

function values. When the fitness function reaches a pre-

determined threshold value, the algorithm stops. 

III. RESULTS 

In this study, we used BSPMs simulated from epicardial 

potentials obtained from a ventricularly paced canine heart 

by R.S. MacLeod and his co-workers at the University of 

Utah Nora Eccles Harrison Cardiovascular Research and 

Training Institute (CVRTI) [16]. The epicardial 

measurements are taken from 490 points; sampling rate is 

1000 Hz.  The BSPMs are simulated by multiplying the 

epicardial potentials by a forward transfer matrix, and then 

adding Gaussian distributed noise. The forward matrices 

used in this study were computed using the Boundary 

Element Method (BEM). For the simulation of BSPMs, a 

realistic torso geometry including heart, lung and torso 

surfaces was used. The forward matrix used in the inverse 

solution is calculated from a homogeneous torso. 

We simulated BSPMs at two different SNR values; 30 dB 

and 10 dB. We compared three different solutions: (i) 

Tikhonov regularization, (ii) Multiple constraints approach 

with two spatial constraints (energy and surface Laplacian), 

(iii) Multiple constraints approach with spatio-temporal 

constraints (the energy constraint, and the temporal 

smoothing constraint proposed in [10]). We used the 

correlation coefficient (CC) and the relative difference 

measurement star (RDMS) measures for quantitative 

comparison. In addition, the epicardial maps are compared 

visually using the map3d visualization software [17]. 

 
TABLE I 

THE AVERAGE AND STANDARD DEVIATION VALUES OF CC AND RDMS FOR 

THE 30 DB SNR DATA. 

30 dB SNR data 
CC 

(avg  ±std) 

RDMS 

(avg ± std) 

Tikhonov regularization 0.74± 0.17 0.65 ±0.17 

Two spatial constraints 0.75 ±0.13 0.64 ±0.15 

Spatio-temporal constraints 0.76 ± 0.11 0.62 ±0.13 

 
TABLE II 

THE AVERAGE AND STANDARD DEVIATION VALUES OF CC AND RDMS FOR 

THE 10 DB SNR DATA. 

10 dB SNR data 
CC 

(avg ±std) 

RDMS 

(avg ±std) 

Tikhonov regularization 0.58 ±0.27 0.82 ±0.24 

Two spatial constraints 0.65 ±0.22 0.76 ±0.23 

Spatio-temporal constraints 0.72�0.19 0.69�0.21 

986



 

 

Fig. 1. Epicardial potential maps at the 6th time instant f

data. a) Real epicardial potentials, b) Tikhonov regulari

spatial constraints,  d) Spatio-temporal constraints. 

 

 

 

 

 

Fig. 2. Epicardial potential maps at the 17th time instan

data. a) Real epicardial potentials, b) Tikhonov reg

spatial constraints,  d) Spatio-temporal constraints. 

 
 

 

 

TABLE III 

THE AVERAGE AND STANDARD DEVIATION VALUES

FOR THE 10 DB SNR DATA, INCLUDING THE THREE-CO

RESULTS. 

10 dB SNR data 
CC  

(avg ±std

Tikhonov regularization 0.58 ± 0.2

Multiple constraints  (spatio-temporal 

constraints) 
0.72 ± 0.1

Multiple constraints (three constraints) 0.74 ± 0.1
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std) 
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 0.27 0.82 ± 0.24 

0.19 0.69 ± 0.21 

0.18 0.65 ± 0.20 

Fig. 3. Correlation coefficient values with resp

SNR data. 

 

Fig. 4. Correlation coefficient values with resp

SNR data. 

 

 

 
Fig. 5. Correlation coefficient values with

SNR data; in this figure, CC for the thr

included. 

 

Fig. 1 and 2 show the real and the

maps, Fig. 3 and 4 show the CC 
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parameter estimation method could

include more than two constrain

constraints (two spatial, one tempo

 

 
respect to time for the 30 dB 

 
respect to time for the 10 dB 

 
ith respect to time for the 10 dB 

three-constraint solution is also 

the reconstructed epicardial 

C values for each method 

d Tables I and II list the 

 of CC and RDMS values 

B and 10 dB SNRs.  

GA-based regularization 

uld easily be modified to 

aints, we used all three 

poral) simultaneously for 

987



  

the 10 dB SNR data. The results are presented in Fig. 5 and 

Table III. 

Our observations are:  

 

• Multiple constraints approach when the regularization 

parameters are found using the GA approach produces 

better results (i.e., lower RDMS and higher CC values) 

compared to Tikhonov regularization. This observation 

is in agreement with the results presented in [10], 

demonstrating that GA can be used for regularization 

parameter estimation. 

• Among the two multiple constraints approaches, 

employing spatio-temporal constraints yields better 

results in comparison to employing two spatial 

constraints.  

• The improvements using the GA-based multiple 

constraints approach are more obvious when the SNR is 

lower.  

• Multiple constraints approach can detect the earliest 

activated sites better than the Tikhonov approach. Fig. 1 

and 2 are plotted at time instants at which the activated 

sites are visible in the two multiple constraints–

solutions, but not in the Tikhonov solution, for 30 dB 

and 10 dB data, respectively. With the 30 dB SNR data, 

since the data is less noisy, these stimulation sites are 

reconstructed at an earlier time. 

• Using three constraints (two spatial and one temporal) 

produces slightly better results compared to using only 

two constraints, especially after the 50
th

 time instant. 

IV. CONCLUSIONS 

It was already demonstrated in [10] that using multiple 

constraints improves inverse solutions compared to 

Tikhonov regularization with a single constraint. However, 

the drawback was the complexity in estimating appropriate 

regularization parameters. Here we proposed a GA based 

algorithm to estimate multiple regularization parameters. We 

demonstrated the applicability of this approach using two 

and three constraints; however the nature of the algorithm 

allows for its extension into problems with higher number of 

constraints. The three constraint solution was included to 

show the applicability of the algorithm with higher number 

of constraints; however, we have not tried to find the best 

number and combination of constraints so that one can 

achieve significant improvements over the Tikhonov 

regularization results. Future work will include design and 

use of more suitable constraints to improve the solutions. 
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