
 
 

 

Abstract—We describe the dynamics of the cardiovascular 
system by finding the input-output relationships in the state 
space of a functional cardiac model, based on state equations 
and observability criteria of control theory. The unit step 
response of the multiple-input multiple-output system model 
illustrates the damping effect of the arterial wall to the 
pulsatility of the heart. Our results show that hypertensive 
patients exhibit a lower inertia of the blood flow. 

   

I.  INTRODUCTION 
Mathematical modeling is now widely applied in 

physiology and medicine to support the life scientist and 
clinical worker. A model is, by definition, an approximation 
of a system in terms of its representation [1]. The vascular 
system is a widely studied physiological system. Its 
hemodynamic characteristics, such as total peripheral 
resistance, total arterial compliance and characteristic 
impedance of the proximal aorta allows us to understand the 
cardiovascular system [2]. Although mathematical modeling 
and parameter estimation may help understanding the 
performance of the system, the strong interactions between 
the characteristics of the vascular system make it difficult 
for a deeper understanding. A well known model to operate 
with the vascular characteristics is the Windkessel model. 

The Windkessel model, developed by Otto Frank, 
expresses heart and systemic arterial system as a closed 
hydraulic circuit comprising a water pump connected to a 
chamber. The circuit is filled with water except for a pocket 
of air in the chamber. Water is pumped into the chamber, 
and both it compresses the air in the pocket and pushes 
water out of the chamber, back to the pump. The elasticity 
and extensibility of the main artery is simulated by the 
compressibility of the air in the pocket, as blood is pumped 
into it by the heart ventricle. This effect is commonly 
referred to as arterial compliance, capacitor C. The term 
compliance is the parameter that specifies the elastic nature 
of the blood vessels. It is defined as the incremental change 
in volume that would result from an incremental change in 
pressure. 

The resistance water encounters while leaving the 
Windkessel and flowing back to the pump, simulates the 
resistance to flow encountered by the blood as it flows 
through the arterial tree from the major arteries, to minor 
arteries, to arterioles, and to capillaries, due to decreasing 
vessel diameter. This resistance to flow, R, is known as 
peripheral resistance [3], [4]. 

We consider the four-element Windkesse1 model, first 
proposed by Burathi and Gnudi in 1982 [5]. This model is 

shown schematically in Fig. 1 and it consists of parallel 
connection of resistor and capacitor. Resistor Rp represents 
total peripheral resistance and capacitor C stands for 
compliance of vessels. Another resistive element between 
the pump and the air-chamber, Rc, simulates the resistance to 
blood flow due to the aortic or pulmonary valve. L is an 
inertial element in parallel with the characteristic resistance 
Rc. With this arrangement, the model can account for the 
inertia of the whole arterial system at low frequencies and at 
medium and high frequencies permits the characteristic 
resistance to come into play [6]. 

Other authors have modeled the cardiovascular system 
based on either the two, three or four-element Windkessel 
model, to estimate parameters [2],[7], to simulate the 
waveform of the pressure signal [8], or to study some 
specific characteristics, [9-12].  
 

 
Fig. 1.  Four-element Windkessel model 

 
Our goal is to describe the dynamics of the cardiovascular 

system by finding the input-output relationships in the state 
space, assuming the heart as a stable biological system with 
feedback [13],[14]. 

In this paper we use observability criteria and state 
equations to simultaneously calculate multiple relationships 
that partly characterize the cardiac dynamics.  

 

II. METHODS 

A.  Data 
We used public data from MIMIC II (Multiparameter 

Intelligent Monitoring in Intensive Care) Clinical Database, 
made available by Physionet [15]. Each record in the 
MIMIC II Clinical Database contains information about a 
single patient, who had been admitted to an ICU. The 
database also includes thousands of records of continuous 

A multiple-input multiple-output system for modeling the cardiac 
dynamics 

Jorge E. Monzon, Carlos Alvarez Picaza, Maria I. Pisarello 
Universidad Nacional del Nordeste, Corrientes, Argentina 

jemonzon@unne.edu.ar 

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 1041

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



 
 

 

high-resolution physiologic waveforms and minute-by-
minute numeric time series of physiologic measurements. 
We considered only those records in the database matching 
waveform and clinical data. Some records were discarded 
due to lacking of clinical information, in particular of stroke 
volume data, needed to calculate arterial compliance using 
the area method as explained later.   

Table I lists data from the MIMIC II database. Columns 2 
and 3 show systolic and diastolic pressures respectively. In 
column 4 the calculated compliance for each record is listed. 

Values in column 5 indicate the differential pressure (i.e. 
SP-DP), a variable which is associated to the inertia of the 
system. 

 

B. The area method to calculate compliance 
We use the area method to estimate compliance. It is 

based on a linear relation between pressure and volume [16], 
taking into account the area under the pressure curve above 
a constant level. The method makes use of the equation 
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is an area index, expressing the ratio of the total area under 
the aortic pressure curve divided by the diastolic area. The 
area As goes from the start of the cycle up to the time of the 
dicrotic notch of the aortic pressure curve. Ad goes to end of 
diastole. SV represents the Stroke Volume. Ps

* is the pressure 
at the instant of the dicrotic notch and Pd stands for diastolic 
pressure.   

 

C.  Modeling in the state-space 
As the operation of the cardiac system involves many 

variables such as pressure, blood density, compliance, 
arterial wall resistance, among others, it would be best 
modeled by a MIMO system. We designed such model by 
connecting two SISO (single-input single-output) systems in 
parallel. The input matrix represents two variables: 
compliance and inertia of blood flow.  

The transfer functions for the four-element Windkessel 
model, with 2 inputs and 2 outputs are: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
1 1 1

2
2 2 2

1 1 1
o o o i

o o o i

s E s sE s E s E s
C C

s LE s sE s E s E s
τ
τ

+ + =

+ + =

   (1) 

 
where τ is RpC. 
From (1), the state equations of the model are defined by: 
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The input, output and state variables of the system are: 
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TABLE I 
CALCULATED COMPLIANCE AND OBSERVABILITY DETERMINANT  

Signal SP 
mmHg 

DP 
mmHg 

C 
x 10-4 
cm3/ 

mmHg 

SP-DP 
mmHg 

Det 
(Obs) 

a40002 110.89 78.63 1.01 32.26 0.95 

a40006 124.4 56 3.76 68.4 0.09 

a40050 106.8 53.52 2.30 53.28 0.2 

a40096 102.64 62.46 3.15 40.18 0.12 

a40277 94 67.02 1.52 26.98 0.43 

a40329 133.4 41.8 1.66 91.6 0.36 

a40384 110 47.8 0.73 62.2 1.84 

a40424 100 49.65 4.94 50.35 0.07 

a40493 94.56 42 1.32 52.56 0.57 

a40551 116,04 57,12 1,88 58.92 0.29 

a40717 125.44 53.89 2.42 71.55 0.18 

a40764 101.92 54.96 1.12 46.96 0.78 

a40921 138.1 80.9 1.51 57.2 0.44 

a40928 98 41.12 1.35 56.88 0.54 

a40937 115.44 53.84 1.31 61.6 0.58 

a41137 139.55 78.22 2.02 61.33 0.25 

a41694 108.32 40.04 1.29 68.28 0.59 

a41770 93.28 57.12 7.09 36.16     0.06 
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In matrix notation: 

x = Ax + Bu
y = Cx
&

                 (6) 

where x&  is the state vector, y is the output vector, A  is the 
state matrix, B  is the input matrix, C  is the output matrix 
and u is the input vector . 
 
Finally, 
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where u3 = u4 = 0 and y3 = y4 = 0 to get a square matrix  

D.  Observability of the system 
 A system is fully observable if state x(t0) is determined 
from the observation of y(t) for a finite time interval t0 ≤ t ≤ 
t1. Therefore a system is fully observable if all state 
transitions eventually affect all the elements of the output 
vector. The concept of observability is useful to solve the 
problem of recovering unmeasured state variables from 
measurable variables in the minimal possible time. Internal 
states can be inferred from external outputs. 

For a system to be observable, the matrix of observability 
given by:  
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should have a non zero determinant. 

To verify if a system is observable, we calculate the 
determinant of the observability matrix, one for each patient. 
There is a relationship between the value of such 
determinant and the calculated values of compliance. 

  

III.  RESULTS AND DISCUSSION 

Results of the analysis of the observability of the system 
are listed in column 6 of Table I. We found non zero 
determinants for all 18 analyzed cases.  

There is a linear relationship between compliance and 
determinant of the observability matrix. For high values of 
compliance, the determinant approaches zero, and viceversa. 
This indicates that for highly compliant systems, the model 
tends to be non observable.  

We could calculate the relationships between all inputs 
and outputs due to the observability of our system. As an 
example, we show the transfer matrix for patient signal 
a40764 (position 12 in the table). Each element of the matrix 
is a transfer function indicating the relationships between 
inputs and outputs for that particular patient. 

If 
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Figure 2 illustrates how inputs and outputs relationships 

are built.  

 
Fig. 2. Multiple transfer functions  
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Figure 3 shows the model response for a hypertensive 

patient (Record #a40717, No. 11 in Table I). Fig. 3(a) 
illustrates the variation of compliance in time for systolic 
pressure, while 3(b) represents the variation of compliance 
for diastolic pressure. Fig. 3(c) and Fig. 3(d) show the 
inertia of blood flow in time for systolic and diastolic 
pressures respectively.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 3. Response for a hypertensive patient 
 
In Fig. 3(c) the recovery time of the arterial wall as shown 

by the inertia of the blood flow is approximately 1 s, longer 
than the recovery time modeled for normotensive patients. 
The compliance represents the increase in blood volume in a 
vessel when the pressure in the same vessel is also 
increased. As it is known, patients with established 
hypertension show reduced distensibility and compliance in 
comparison to normotensive subjects, which supports our 
results [13],[17]. 

 

IV.  CONCLUSION 

Modeling the cardiac system with modern control theory 
tools allows the analysis of cardiovascular dynamics using 
state equations.  

The goal of our paper was to understand the relationship 
of arterial compliance and inertia of blood flow with systolic 
and diastolic pressures, two clinical variables which are 
easily and non invasively captured in the hospital setting. 
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